25 research outputs found

    A Novel Placement Algorithm for the Controllers Of the Virtual Networks (COVN) in SD-WAN with Multiple VNs

    Get PDF
    The escalation of communication demands and the emergence of new telecommunication concepts such as 5G cellular system and smart cities requires the consolidation of a flexible and manageable backbone network. These requirements motivated the researcher to come up with a new placement algorithm for the Controller of Virtual Network (COVN). This is because SDN and network virtualisation techniques (NFV and NV), are integrated to produce multiple virtual networks running on a single SD-WAN infrastructure, which serves the new backbone. One of the significant challenges of SD-WAN is determining the number and the locations of its controllers to optimise the network latency and reliability. This problem is fairly investigated and solved by several controller placement algorithms where the focus is only on physical controllers. The advent of the sliced SD-WAN produces a new challenge, which necessitates the SDWAN controllers (physical controller/hosted server) to run multiple instances of controllers (virtual controllers). Every virtual network is managed by its virtual controllers. This calls for an algorithm to determine the number and the positions of physical and virtual controllers of the multiple virtual SD-WANs. According to the literature review and to the best of the author knowledge, this problem is neither examined nor yet solved. To address this issue, the researcher designed a novel COVN placement algorithm to compute the controller placement of the physical controllers, then calculate the controller placement of every virtual SD-WAN independently, taking into consideration the controller placement of other virtual SD-WANs. COVN placement does not partition the SD-WAN when placing the physical controllers, unlike all previous placement algorithms. Instead, it identifies the nodes of the optimal reliability and latency to all switches of the network. Then, it partitions every VN separately to create its independent controller placement. COVN placement optimises the reliability and the latency according to the desired weights. It also maintains the load balancing and the optimal resources utilisation. Moreover, it supports the recovering of the controller failure. This novel algorithm is intensively evaluated using the produced COVN simulator and the developed Mininet emulator. The results indicate that COVN placement achieves the required optimisations mentioned above. Also, the implementations disclose that COVN placement can compute the controller placement for a large network ( 754 switches) in very small computation time (49.53 s). In addition, COVN placement is compared to POCO algorithm. The outcome reveals that COVN placement provides better reliability in about 30.76% and a bit higher latency in about 1.38%. Further, it surpasses POCO by constructing the balanced clusters according to the switch loads and offering the more efficient placement to recover controller-failure

    Towards a multilevel ant colony optimization

    Get PDF
    Masteroppgave i Informasjons- og kommunikasjonsteknologi IKT590 Universitetet i Agder 2014Ant colony optimization is a metaheuristic approach for solving combinatorial optimization problems which belongs to swarm intelligence techniques. Ant colony optimization algorithms are one of the most successful strands of swarm intelligence which has already shown very good performance in many combinatorial problems and for some real applications. This thesis introduces a new multilevel approach for ant colony optimization to solve the NP-hard problems shortest path and traveling salesman. We have reviewed different elements of multilevel algorithm which helped us in construction of our proposed multilevel ant colony optimization solution. We for comparison purposes implemented our own multi-threaded variant Dijkstra for solving shortest path to compare it with single level and multilevel ant colony optimization and reviewed different techniques such as genetic algorithms and Dijkstra’s algorithm. Our proposed multilevel ant colony optimization was developed based on the single level ant colony optimization which we both implemented. We have applied the novel multilevel ant colony optimization to solve the shortest path and traveling salesman problem. We show that the multilevel variant of ant colony optimization outperforms single level. The experimental results conducted demonstrate the overall performance of multilevel in comparison to the single level ant colony optimization, displaying a vast improvement when employing a multilevel approach in contrast to the classical single level approach. These results gave us a better understanding of the problems and provide indications for further research

    Reliable Data Transmission in Challenging Vehicular Network using Delay Tolerant Network

    Get PDF
    In the 21st century, there has been an increasing tendency toward the wide adoption of wireless networks and technologies due to their significant advantages such as flexibility, mobility, accessibility, and low cost. Wireless technologies have therefore become essential factors in the improvement of intra-vehicle road safety in Vehicular Ad-hoc Network (VANET), which potentially reduce road traffic accidents by enabling efficient exchange of information between vehicles in the early stages. However, due to the inherent high mobility and rapid change of topology, there are numerous challenges in VANET. Hence, different software packages have been combined in this project to create the VANET environment, whereby the Objective Modular Network Testbed (OMNeT++) and the Simulation of Urban Mobility (SUMO), along with Vehicles in Network Simulation (VEINS) are integrated to model the VANET environment. Also, Delay Tolerant Network (DTN) are implemented in the Opportunistic Network Environment (ONE) simulator, where the Store-Carry-Forward technique is used to route traffic. When network resources are not limited, a high delivery ratio is possible. However, when network resources are scarce, these protocols will have a low delivery ratio and high overhead. Due to these limitations, in this research, an extensive performance evaluation of various routing protocols for DTN with different buffer management policies, giving insight into the impact of these policies on DTN routing protocol performance has been conducted. The empirical study gave insight into the strengths and limitations of the existing protocols thus enabling the selection of the benchmark protocols utilized in evaluating a new Enhanced Message Replication Technique (EMRT) proposed in this thesis. The main contribution of this thesis is the design, implementation, and evaluation of a novel EMRT that dynamically adjusts the number of message replicas based on a node's ability to quickly disseminate the message and maximize the delivery ratio. EMRT is evaluated using three different quota protocols: Spray&Wait, Encounter Based Routing (EBR), and Destination Based Routing Protocol (DBRP). Simulation results show that applying EMRT to these protocols improves the delivery ratio while reducing overhead ratio and latency average. For example, when combined with Spray&Wait, EBR, and DBRP, the delivery probability is improved by 13%, 8%, and 10%, respectively, while the latency average is reduced by 51%, 14%, and 13%, respectively

    Trajectory planning based on adaptive model predictive control: Study of the performance of an autonomous vehicle in critical highway scenarios

    Get PDF
    Increasing automation in automotive industry is an important contribution to overcome many of the major societal challenges. However, testing and validating a highly autonomous vehicle is one of the biggest obstacles to the deployment of such vehicles, since they rely on data-driven and real-time sensors, actuators, complex algorithms, machine learning systems, and powerful processors to execute software, and they must be proven to be reliable and safe. For this reason, the verification, validation and testing (VVT) of autonomous vehicles is gaining interest and attention among the scientific community and there has been a number of significant efforts in this field. VVT helps developers and testers to determine any hidden faults, increasing systems confidence in safety, security, functional analysis, and in the ability to integrate autonomous prototypes into existing road networks. Other stakeholders like higher-management, public authorities and the public are also crucial to complete the VTT process. As autonomous vehicles require hundreds of millions of kilometers of testing driven on public roads before vehicle certification, simulations are playing a key role as they allow the simulation tools to virtually test millions of real-life scenarios, increasing safety and reducing costs, time and the need for physical road tests. In this study, a literature review is conducted to classify approaches for the VVT and an existing simulation tool is used to implement an autonomous driving system. The system will be characterized from the point of view of its performance in some critical highway scenarios.O aumento da automação na indústria automotiva é uma importante contribuição para superar muitos dos principais desafios da sociedade. No entanto, testar e validar um veículo altamente autónomo é um dos maiores obstáculos para a implantação de tais veículos, uma vez que eles contam com sensores, atuadores, algoritmos complexos, sistemas de aprendizagem de máquina e processadores potentes para executar softwares em tempo real, e devem ser comprovadamente confiáveis e seguros. Por esta razão, a verificação, validação e teste (VVT) de veículos autónomos está a ganhar interesse e atenção entre a comunidade científica e tem havido uma série de esforços significativos neste campo. A VVT ajuda os desenvolvedores e testadores a determinar quaisquer falhas ocultas, aumentando a confiança dos sistemas na segurança, proteção, análise funcional e na capacidade de integrar protótipos autónomos em redes rodoviárias existentes. Outras partes interessadas, como a alta administração, autoridades públicas e o público também são cruciais para concluir o processo de VTT. Como os veículos autónomos exigem centenas de milhões de quilómetros de testes conduzidos em vias públicas antes da certificação do veículo, as simulações estão a desempenhar cada vez mais um papel fundamental, pois permitem que as ferramentas de simulação testem virtualmente milhões de cenários da vida real, aumentando a segurança e reduzindo custos, tempo e necessidade de testes físicos em estrada. Neste estudo, é realizada uma revisão da literatura para classificar abordagens para a VVT e uma ferramenta de simulação existente é usada para implementar um sistema de direção autónoma. O sistema é caracterizado do ponto de vista do seu desempenho em alguns cenários críticos de autoestrad

    Behavioural models for cycling - Case studies of the Copenhagen Region.

    Get PDF

    Mobile Ad-Hoc Networks

    Get PDF
    Being infrastructure-less and without central administration control, wireless ad-hoc networking is playing a more and more important role in extending the coverage of traditional wireless infrastructure (cellular networks, wireless LAN, etc). This book includes state-of-the-art techniques and solutions for wireless ad-hoc networks. It focuses on the following topics in ad-hoc networks: quality-of-service and video communication, routing protocol and cross-layer design. A few interesting problems about security and delay-tolerant networks are also discussed. This book is targeted to provide network engineers and researchers with design guidelines for large scale wireless ad hoc networks
    corecore