51 research outputs found

    Evaluación de la degradación de la tierra usando la entropía de shannon sobre imágenes polarimétricas en desiertos costeros Patagónicos

    Get PDF
    En esta investigación se focalizó en la Entropía de Shannon (ES) para la caracterización de imágenes polarimétricas de apertura sintética. Este parámetro analiza la contribución de la información por pixeles individuales para toda la imagen en la evaluación de la degradación de la tierra en imágenes ALOS PALSAR. Escenas de polarización dual y cuádruple fueron adquiridas bajo el proyecto SAOCOM (Satélite Argentino de Observación con Microondas) en 2010 y 2011, del desierto costero noreste patagónico, Argentina. Los mapas fueron verificados con información de alta verosimilitud para la misma área de estudio. Los resultados muestran que la ES puede describir y precisar las características de las imágenes de manera obvia, de tal manera que representa un valor de referencia para la detección de la degradación de la tierra y la extracción de las características de los diferentes estados y transiciones.We focus on Shannon Entropy (SE) for the characterization of polarimetric Synthetic Aperture Radar (PolSAR) images. This approach analyzes the information contribution made by individual pixels to the whole image for assessment of land degradation in the information content of ALOS PALSAR images. Additionally, the performance of other polarization parameters, and polarization decomposition is illustrated and discussed. Dual-Pol and Quad-Pol scenes have been acquired under the SAOCOM (Satélite Argentino de Observación con Microondas, Spanish for Argentine Microwaves Observation Satellite) project in 2010 and 2011, from northeastern Patagonian coastal desert, Argentina. The accuracy of the SE map was assessed using a set of ground observations based on remotely sensed data that have higher accuracy. The results show that the SE can describe and determine the image features more obviously in the study area, so that it represents an important reference value for land degradation detection and land status characteristics extraction .Fil: del Valle, Hector Francisco. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Nacional Patagonico; ArgentinaFil: Hardtke, Leonardo Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Nacional Patagonico; ArgentinaFil: Blanco, Paula Daniela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Nacional Patagonico; ArgentinaFil: Sione, Walter Fabian. Universidad Autónoma de Entre Ríos. Fac de Ciencia y Tecnologia. Centro Regional de Geomatica; Argentina. Universidad Nacional de Luján; Argentin

    Polarimetric Synthetic Aperture Radar

    Get PDF
    This open access book focuses on the practical application of electromagnetic polarimetry principles in Earth remote sensing with an educational purpose. In the last decade, the operations from fully polarimetric synthetic aperture radar such as the Japanese ALOS/PalSAR, the Canadian Radarsat-2 and the German TerraSAR-X and their easy data access for scientific use have developed further the research and data applications at L,C and X band. As a consequence, the wider distribution of polarimetric data sets across the remote sensing community boosted activity and development in polarimetric SAR applications, also in view of future missions. Numerous experiments with real data from spaceborne platforms are shown, with the aim of giving an up-to-date and complete treatment of the unique benefits of fully polarimetric synthetic aperture radar data in five different domains: forest, agriculture, cryosphere, urban and oceans

    Study of the speckle noise effects over the eigen decomposition of polarimetric SAR data: a review

    No full text
    This paper is focused on considering the effects of speckle noise on the eigen decomposition of the co- herency matrix. Based on a perturbation analysis of the matrix, it is possible to obtain an analytical expression for the mean value of the eigenvalues and the eigenvectors, as well as for the Entropy, the Anisotroopy and the dif- ferent a angles. The analytical expressions are compared against simulated polarimetric SAR data, demonstrating the correctness of the different expressions.Peer ReviewedPostprint (published version

    Advanced machine learning algorithms for Canadian wetland mapping using polarimetric synthetic aperture radar (PolSAR) and optical imagery

    Get PDF
    Wetlands are complex land cover ecosystems that represent a wide range of biophysical conditions. They are one of the most productive ecosystems and provide several important environmental functionalities. As such, wetland mapping and monitoring using cost- and time-efficient approaches are of great interest for sustainable management and resource assessment. In this regard, satellite remote sensing data are greatly beneficial, as they capture a synoptic and multi-temporal view of landscapes. The ability to extract useful information from satellite imagery greatly affects the accuracy and reliability of the final products. This is of particular concern for mapping complex land cover ecosystems, such as wetlands, where complex, heterogeneous, and fragmented landscape results in similar backscatter/spectral signatures of land cover classes in satellite images. Accordingly, the overarching purpose of this thesis is to contribute to existing methodologies of wetland classification by proposing and developing several new techniques based on advanced remote sensing tools and optical and Synthetic Aperture Radar (SAR) imagery. Specifically, the importance of employing an efficient speckle reduction method for polarimetric SAR (PolSAR) image processing is discussed and a new speckle reduction technique is proposed. Two novel techniques are also introduced for improving the accuracy of wetland classification. In particular, a new hierarchical classification algorithm using multi-frequency SAR data is proposed that discriminates wetland classes in three steps depending on their complexity and similarity. The experimental results reveal that the proposed method is advantageous for mapping complex land cover ecosystems compared to single stream classification approaches, which have been extensively used in the literature. Furthermore, a new feature weighting approach is proposed based on the statistical and physical characteristics of PolSAR data to improve the discrimination capability of input features prior to incorporating them into the classification scheme. This study also demonstrates the transferability of existing classification algorithms, which have been developed based on RADARSAT-2 imagery, to compact polarimetry SAR data that will be collected by the upcoming RADARSAT Constellation Mission (RCM). The capability of several well-known deep Convolutional Neural Network (CNN) architectures currently employed in computer vision is first introduced in this thesis for classification of wetland complexes using multispectral remote sensing data. Finally, this research results in the first provincial-scale wetland inventory maps of Newfoundland and Labrador using the Google Earth Engine (GEE) cloud computing resources and open access Earth Observation (EO) collected by the Copernicus Sentinel missions. Overall, the methodologies proposed in this thesis address fundamental limitations/challenges of wetland mapping using remote sensing data, which have been ignored in the literature. These challenges include the backscattering/spectrally similar signature of wetland classes, insufficient classification accuracy of wetland classes, and limitations of wetland mapping on large scales. In addition to the capabilities of the proposed methods for mapping wetland complexes, the use of these developed techniques for classifying other complex land cover types beyond wetlands, such as sea ice and crop ecosystems, offers a potential avenue for further research

    Flood Extent Mapping During Hurricane Florence With Repeat-Pass L-Band UAVSAR Images

    Get PDF
    Extreme precipitation events are intensifying due to a warming climate, which, in some cases, is leading to increases in flooding. Detection of flood extent is essential for flood disaster response, management, and prevention. However, it is challenging to delineate inundated areas through most publicly available optical and short-wavelength radar data, as neither can “see” through dense forest canopies. In 2018, Hurricane Florence produced heavy rainfall and subsequent record-setting riverine flooding in North Carolina, USA. NASA/JPL collected daily high-resolution full-polarized L-band Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) data between September 18th and 23rd. Here, we use UAVSAR data to construct a flood inundation detection framework through a combination of polarimetric decomposition methods and a Random Forest classifier. Validation of the established models with compiled ground references shows that the incorporation of linear polarizations with polarimetric decomposition and terrain variables significantly enhances the accuracy of inundation classification, and the Kappa statistic increases to 91.4% from 64.3% with linear polarizations alone. We show that floods receded faster near the upper reaches of the Neuse, Cape Fear, and Lumbee Rivers. Meanwhile, along the flat terrain close to the lower reaches of the Cape Fear River, the flood wave traveled downstream during the observation period, resulting in the flood extent expanding 16.1% during the observation period. In addition to revealing flood inundation changes spatially, flood maps such as those produced here have great potential for assessing flood damages, supporting disaster relief, and assisting hydrodynamic modeling to achieve flood-resilience goals

    Polarimetric Synthetic Aperture Radar, Principles and Application

    Get PDF
    Demonstrates the benefits of the usage of fully polarimetric synthetic aperture radar data in applications of Earth remote sensing, with educational and development purposes. Includes numerous up-to-date examples with real data from spaceborne platforms and possibility to use a software to support lecture practicals. Reviews theoretical principles in an intuitive way for each application topic. Covers in depth five application domains (forests, agriculture, cryosphere, urban, and oceans), with reference also to hazard monitorin

    The InflateSAR Campaign: Testing SAR Vessel Detection Systems for Refugee Rubber Inflatables

    Get PDF
    Countless numbers of people lost their lives at Europe’s southern borders in recent years in the attempt to cross to Europe in small rubber inflatables. This work examines satellite-based approaches to build up future systems that can automatically detect those boats. We compare the performance of several automatic vessel detectors using real synthetic aperture radar (SAR) data from X-band and C-band sensors on TerraSAR-X and Sentinel-1. The data was collected in an experimental campaign where an empty boat lies on a lake’s surface to analyse the influence of main sensor parameters (incidence angle, polarization mode, spatial resolution) on the detectability of our inflatable. All detectors are implemented with a moving window and use local clutter statistics from the adjacent water surface. Among tested detectors are well-known intensity-based (CA-CFAR), sublook-based (sublook correlation) and polarimetric-based (PWF, PMF, PNF, entropy, symmetry and iDPolRAD) approaches. Additionally, we introduced a new version of the volume detecting iDPolRAD aimed at detecting surface anomalies and compare two approaches to combine the volume and the surface in one algorithm, producing two new highly performing detectors. The results are compared with receiver operating characteristic (ROC) curves, enabling us to compare detectors independently of threshold selection

    Monitoring Snow Cover and Snowmelt Dynamics and Assessing their Influences on Inland Water Resources

    Get PDF
    Snow is one of the most vital cryospheric components owing to its wide coverage as well as its unique physical characteristics. It not only affects the balance of numerous natural systems but also influences various socio-economic activities of human beings. Notably, the importance of snowmelt water to global water resources is outstanding, as millions of populations rely on snowmelt water for daily consumption and agricultural use. Nevertheless, due to the unprecedented temperature rise resulting from the deterioration of climate change, global snow cover extent (SCE) has been shrinking significantly, which endangers the sustainability and availability of inland water resources. Therefore, in order to understand cryo-hydrosphere interactions under a warming climate, (1) monitoring SCE dynamics and snowmelt conditions, (2) tracking the dynamics of snowmelt-influenced waterbodies, and (3) assessing the causal effect of snowmelt conditions on inland water resources are indispensable. However, for each point, there exist many research questions that need to be answered. Consequently, in this thesis, five objectives are proposed accordingly. Objective 1: Reviewing the characteristics of SAR and its interactions with snow, and exploring the trends, difficulties, and opportunities of existing SAR-based SCE mapping studies; Objective 2: Proposing a novel total and wet SCE mapping strategy based on freely accessible SAR imagery with all land cover classes applicability and global transferability; Objective 3: Enhancing total SCE mapping accuracy by fusing SAR- and multi-spectral sensor-based information, and providing total SCE mapping reliability map information; Objective 4: Proposing a cloud-free and illumination-independent inland waterbody dynamics tracking strategy using freely accessible datasets and services; Objective 5: Assessing the influence of snowmelt conditions on inland water resources
    corecore