194 research outputs found

    ์ €๋ณต์žก๋„ ํ›„๋ณด OFDM ์‹ ํ˜ธ ์ƒ์„ฑ์„ ์ด์šฉํ•œ ์ƒˆ๋กœ์šด PTS ๋ฐฉ๋ฒ•

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์ „๊ธฐยท์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€, 2014. 2. ๋…ธ์ข…์„ .This dissertation proposes several research results on the peak-to-average power ratio (PAPR) reduction schemes for the orthogonal frequency division multiplexing (OFDM) systems. The PAPR is the one of major drawback of OFDM system which causes signal distortion when OFDM signal passes through nonlinear high power amplifier (HPA). Various schemes have been proposed to reduce the PAPR of OFDM signals such as clipping, selected mapping (SLM), partial transmit sequence (PTS), active constellation extension (ACE), companding, and tone reservation (TR). Among them, PTS scheme can transmit an OFDM signal vector by generating many alternative OFDM signal vectors using the partitioned subblock signals and selecting the optimal OFDM signal vector with the minimum PAPR. However, the PTS scheme requires large computational complexity, because it needs many inverse fast Fourier transforms (IFFTs) of subblock signals and lots of alternative OFDM signal vectors are generated. In this dissertation, we concentrate on reducing the computational complexity of the PTS scheme. In the first part of this dissertation, we propose a new PTS scheme with low computational complexity using two search steps to find a subset of phase rotating vectors showing good PAPR reduction performance. In the first step, sequences with low correlation are used as phase rotating vectors for PTS scheme, which are called the initial phase vectors. Kasami sequence and quaternary sequence are used in this step as the initial phase vectors. In the second step, local search is performed based on the initial phase vectors to find additional phase rotating vectors which show good PAPR reduction performance. Numerical analysis shows that the proposed PTS scheme can achieve almost the same PAPR reduction performance as the conventional PTS scheme with much lower computational complexity than other low-complexity PTS schemes. In the second part of the dissertation, we propose another low-complexity PTS schemes using the dominant time-domain OFDM signal samples, which are only used to calculate PAPR of each alternative OFDM signal vector. In this PTS scheme, we propose efficient metrics to select the dominant time-domain samples. For further lowering the computational complexity, dominant time-domain samples are sorted in decreasing order by the proposed metric values and then the power of each sample is compared with the minimum PAPR of the previously examined alternative OFDM signal vectors. Numerical results confirm that the proposed PTS schemes using new metrics show large computational complexity reduction compared to other existing low-complexity PTS schemes without PAPR degradation. In the last part of the dissertation, for the reduced-complexity PTS scheme, a new selection method of the dominant time-domain samples is proposed by rotating the IFFTed signal samples to the area on which the IFFTed signal sample of the first subblock is located in the signal space. Moreover, the method of pre-exclusion of the phase rotating vectors using the time-domain sample rotation is proposed to reduce the number of alternative OFDM signal vectors. Further, three proposed PTS schemes are introduced to reduce the computational complexity by using simple OFDM signal rotation and pre-exclusion of the phase rotating vectors. Numerical analysis shows that the proposed PTS schemes achieve the same PAPR reduction performance as that of the conventional PTS scheme with the large computational complexity reduction.Docto

    New methods of partial transmit sequence for reducing the high peak-to-average-power ratio with low complexity in the ofdm and f-ofdm systems

    Get PDF
    The orthogonal frequency division multiplexing system (OFDM) is one of the most important components for the multicarrier waveform design in the wireless communication standards. Consequently, the OFDM system has been adopted by many high-speed wireless standards. However, the high peak-to-average- power ratio (PAPR) is the main obstacle of the OFDM system in the real applications because of the non-linearity nature in the transmitter. Partial transmit sequence (PTS) is one of the effective PAPR reduction techniques that has been employed for reducing the PAPR value 3 dB; however, the high computational complexity is the main drawback of this technique. This thesis proposes novel methods and algorithms for reducing the high PAPR value with low computational complexity depending on the PTS technique. First, three novel subblocks partitioning schemes, Sine Shape partitioning scheme (SS-PTS), Subsets partitioning scheme (Sb-PTS), and Hybrid partitioning scheme (H-PTS) have been introduced for improving the PAPR reduction performance with low computational complexity in the frequency-domain of the PTS structure. Secondly, two novel algorithms, Grouping Complex iterations algorithm (G-C-PTS), and Gray Code Phase Factor algorithm (Gray-PF-PTS) have been developed to reduce the computational complexity for finding the optimum phase rotation factors in the time domain part of the PTS structure. Third, a new hybrid method that combines the Selective mapping and Cyclically Shifts Sequences (SLM-CSS-PTS) techniques in parallel has been proposed for improving the PAPR reduction performance and the computational complexity level. Based on the proposed methods, an improved PTS method that merges the best subblock partitioning scheme in the frequency domain and the best low-complexity algorithm in the time domain has been introduced to enhance the PAPR reduction performance better than the conventional PTS method with extremely low computational complexity level. The efficiency of the proposed methods is verified by comparing the predicted results with the existing modified PTS methods in the literature using Matlab software simulation and numerical calculation. The results that obtained using the proposed methods achieve a superior gain in the PAPR reduction performance compared with the conventional PTS technique. In addition, the number of complex addition and multiplication operations has been reduced compared with the conventional PTS method by about 54%, and 32% for the frequency domain schemes, 51% and 65% for the time domain algorithms, 18% and 42% for the combining method. Moreover, the improved PTS method which combines the best scheme in the frequency domain and the best algorithm in the time domain outperforms the conventional PTS method in terms of the PAPR reduction performance and the computational complexity level, where the number of complex addition and multiplication operation has been reduced by about 51% and 63%, respectively. Finally, the proposed methods and algorithms have been applied to the OFDM and Filtered-OFDM (F-OFDM) systems through Matlab software simulation, where F-OFDM refers to the waveform design candidate in the next generation technology (5G)

    AN EFFICIENT METHOD FOR PAPR REDUCTION IN OFDM SYSTEMS WITH REDUCED COMPLEXITY

    Get PDF
    Orthogonal Frequency Division Multiplexing (OFDM), widely used in digital wireless communication, has a major drawback of high Peak to Average Power Ratio (PAPR). A reduced complexity partial transmit sequence (PTS) scheme has been proposed to solve high peak to average power ratio (PAPR) of orthogonal frequency division multiplexing (OFDM) system. In the proposed PTS scheme, a function is generated by summing the power of time domain samples at time โ€˜nโ€™ in each sub blocks, known as โ€œHnโ€.Only those samples, having Hn greater than or equal to a preset threshold value (ฮฑT) are used for peak power calculation during the process of selecting a candidate signal with the lowest PAPR for transmission. As compared to conventional PTS scheme, the proposed scheme achieves almost the same PAPR reduction performance with much lower computational complexity
    • โ€ฆ
    corecore