347 research outputs found

    Intelligent Breast Cancer Diagnosis with Heuristic-assisted Trans-Res-U-Net and Multiscale DenseNet using Mammogram Images

    Full text link
    Breast cancer (BC) significantly contributes to cancer-related mortality in women, underscoring the criticality of early detection for optimal patient outcomes. A mammography is a key tool for identifying and diagnosing breast abnormalities; however, accurately distinguishing malignant mass lesions remains challenging. To address this issue, we propose a novel deep learning approach for BC screening utilizing mammography images. Our proposed model comprises three distinct stages: data collection from established benchmark sources, image segmentation employing an Atrous Convolution-based Attentive and Adaptive Trans-Res-UNet (ACA-ATRUNet) architecture, and BC identification via an Atrous Convolution-based Attentive and Adaptive Multi-scale DenseNet (ACA-AMDN) model. The hyperparameters within the ACA-ATRUNet and ACA-AMDN models are optimised using the Modified Mussel Length-based Eurasian Oystercatcher Optimization (MML-EOO) algorithm. Performance evaluation, leveraging multiple metrics, is conducted, and a comparative analysis against conventional methods is presented. Our experimental findings reveal that the proposed BC detection framework attains superior precision rates in early disease detection, demonstrating its potential to enhance mammography-based screening methodologies.Comment: 22 pages, 17 figures, 4 Tables and Appendix A: Supplementary Materia

    MizAR 60 for Mizar 50

    Get PDF
    As a present to Mizar on its 50th anniversary, we develop an AI/TP system that automatically proves about 60% of the Mizar theorems in the hammer setting. We also automatically prove 75% of the Mizar theorems when the automated provers are helped by using only the premises used in the human-written Mizar proofs. We describe the methods and large-scale experiments leading to these results. This includes in particular the E and Vampire provers, their ENIGMA and Deepire learning modifications, a number of learning-based premise selection methods, and the incremental loop that interleaves growing a corpus of millions of ATP proofs with training increasingly strong AI/TP systems on them. We also present a selection of Mizar problems that were proved automatically

    Offline Equilibrium Finding

    Full text link
    Offline reinforcement learning (Offline RL) is an emerging field that has recently begun gaining attention across various application domains due to its ability to learn behavior from earlier collected datasets. Using logged data is imperative when further interaction with the environment is expensive (computationally or otherwise), unsafe, or entirely unfeasible. Offline RL proved very successful, paving a path to solving previously intractable real-world problems, and we aim to generalize this paradigm to a multi-agent or multiplayer-game setting. Very little research has been done in this area, as the progress is hindered by the lack of standardized datasets and meaningful benchmarks. In this work, we coin the term offline equilibrium finding (OEF) to describe this area and construct multiple datasets consisting of strategies collected across a wide range of games using several established methods. We also propose a benchmark method -- an amalgamation of a behavior-cloning and a model-based algorithm. Our two model-based algorithms -- OEF-PSRO and OEF-CFR -- are adaptations of the widely-used equilibrium finding algorithms Deep CFR and PSRO in the context of offline learning. In the empirical part, we evaluate the performance of the benchmark algorithms on the constructed datasets. We hope that our efforts may help to accelerate research in large-scale equilibrium finding. Datasets and code are available at https://github.com/SecurityGames/oef
    • …
    corecore