9 research outputs found

    Nonlinear autoregressive moving average-L2 model based adaptive control of nonlinear arm nerve simulator system

    Get PDF
    This paper considers the trouble of the usage of approximate strategies for realizing the neural controllers for nonlinear SISO systems. In this paper, we introduce the nonlinear autoregressive moving average (NARMA-L2) model which might be approximations to the NARMA model. The nonlinear autoregressive moving average (NARMA-L2) model is an precise illustration of the input–output behavior of finite-dimensional nonlinear discrete time dynamical systems in a neighborhood of the equilibrium state. However, it isn't always handy for purposes of neural networks due to its nonlinear dependence on the manipulate input. In this paper, nerves system based arm position sensor device is used to degree the precise arm function for nerve patients the use of the proposed systems. In this paper, neural network controller is designed with NARMA-L2 model, neural network controller is designed with NARMA-L2 model system identification based predictive controller and neural network controller is designed with NARMA-L2 model based model reference adaptive control system. Hence, quite regularly, approximate techniques are used for figuring out the neural controllers to conquer computational complexity. Comparison were made among the neural network controller with NARMA-L2 model, neural network controller with NARMA-L2 model system identification based predictive controller and neural network controller with NARMA-L2 model reference based adaptive control for the preferred input arm function (step, sine wave and random signals). The comparative simulation result shows the effectiveness of the system with a neural network controller with NARMA-L2 model based model reference adaptive control system. Index Terms--- Nonlinear autoregressive moving average, neural network, Model reference adaptive control, Predictive controller DOI: 10.7176/JIEA/10-3-03 Publication date: April 30th 202

    Nonlinear Autoregressive Moving Average-L2 Model Based Adaptive Control of Nonlinear Arm Nerve Simulator System

    Get PDF
    This paper considers the trouble of the usage of approximate strategies for realizing the neural controllers for nonlinear SISO systems. In this paper, we introduce the nonlinear autoregressive moving average (NARMA-L2) model which might be approximations to the NARMA model. The nonlinear autoregressive moving average (NARMA-L2) model is an precise illustration of the input–output behavior of finite-dimensional nonlinear discrete time dynamical systems in a neighborhood of the equilibrium state. However, it isn't always handy for purposes of neural networks due to its nonlinear dependence on the manipulate input. In this paper, nerves system based arm position sensor device is used to degree the precise arm function for nerve patients the use of the proposed systems. In this paper, neural network controller is designed with NARMA-L2 model, neural network controller is designed with NARMA-L2 model system identification based predictive controller and neural network controller is designed with NARMA-L2 model based model reference adaptive control system. Hence, quite regularly, approximate techniques are used for figuring out the neural controllers to conquer computational complexity. Comparison were made among the neural network controller with NARMA-L2 model, neural network controller with NARMA-L2 model system identification based predictive controller and neural network controller with NARMA-L2 model reference based adaptive control for the preferred input arm function (step, sine wave and random signals). The comparative simulation result shows the effectiveness of the system with a neural network controller with NARMA-L2 model based model reference adaptive control system. Index Terms: Nonlinear autoregressive moving average, neural network, Model reference adaptive control, Predictive controller DOI: 10.7176/ISDE/11-2-02 Publication date:March 31st 202

    Adaptive Control using Nonlinear Autoregressive-Moving Average-L2 Model for Realizing Neural Controller for Unknown Finite Dimensional Nonlinear Discrete Time Dynamical Systems

    Get PDF
    This study considers the problem of using approximate way for realizing the neural supervisor for nonlinear multivariable systems. The Nonlinear Autoregressive-Moving Average (NARMA) model is an exact transformation of the input-output behavior of finite-dimensional nonlinear discrete time dynamical organization in a hoodlum of the equilibrium state. However, it is not convenient for intention of adaptive control using neural networks due to its nonlinear dependence on the control input. Hence, quite often, approximate technique are used for realizing the neural supervisor to overcome computational complexity. In this study, we introduce two classes of ideal which are approximations to the NARMA model and which are linear in the control input, namely NARMA-L1 and NARMA-L2. The latter fact substantially simplifies both the theoretical breakdown as well as the practical request of the controller. Extensive imitation studies have shown that the neural controller designed using the proposed approximate models perform very well and in dozens situation even better than an approximate controller designed using the exact NARMA Model. In view of their mathematical tractability as well as their fate in simulation studies, a matter is made in this study that such approximate input-output paragon warrants a detailed study in their own right

    A hybrid PSO-ANFIS approach for horizontal solar radiation prediction in Nigeria

    Get PDF
    For efficient and reliable hydrogen production via solar photovoltaic system, it is important to obtain accurate solar radiation data. Though there are equipment specifically designed for solar radiation prediction but are very expensive and have high maintenance cost that most countries like Nigeria are unable to purchase. In this study, the accuracy of a hybrid PSO-ANFIS method is examined to predict horizontal solar radiation in Nigeria. The prediction is done based on the available meteorological data obtained from NIMET Nigeria. The meteorological data used for this study are monthly mean minimum temperature, maximum temperature, relative humidity and sunshine hours, which serves as inputs to the developed model. The model accuracy is evaluated using two statistical indicators Root Mean Square Error (RMSE) and Coefficient of determination (R²). The accuracy of the proposed model is validated using ANFIS, GA-ANFIS models and other literatures. Based on the statistical parameters used for the model evaluation, the results obtained proves PSO-ANFIS as a good model for predicting solar radiation with the values of RMSE=0.68318, R²=0.9065 at the training stage and RMSE=1.3838, R²=0.8058 at the testing stage. This proves the potentiality of PSO-ANFIS technique for accurate solar radiation prediction

    Frequency deviations stabilizations in restructured power systems using coordinative controllers

    Get PDF
    Modern restructured power system faces excessive frequency aberrations due to the intermittent renewable generations and persistently changing load demands. An efficient and robust control strategy is obligatory to minimise deviations in the system frequency and tie-line to avoid any possible blackout. Hence, in this research, to achieve this target, automatic generation control (AGC) is utilized as a secondary controller to alleviate the changes in interconnected restructured systems at uncertainties. The objective of AGC is to quickly stabilize the deviations in frequency and tie-line power following load fluctuations. This thesis addresses the performance of AGC in two-area restructured power systems with many sophisticated control strategies in the presence of renewable and traditional power plants. As per literature of research work, there are quite a few research studies on AGC of a restructured system using optimized coordinative controllers. Besides, investigations on advanced optimized-based coordinative controller approaches are also rare to find in the literature. So, various combinations of two degrees of freedom (2DOF) controllers are utilized as supplementary controllers to diminish the frequency deviations. Nevertheless, the interconnected tie-lines are typically congested in areas with huge penetration of renewable sources, which may reduce the tie -line capability. Therefore, distinct FACTS controllers and ultra-capacitor (UC) are integrated into two-area restructured systems for strengthening the tie-line power and frequency. Further, new optimization techniques such as cuckoo search (CS), bat algorithm (BA), moth-flame optimization (MFO) are utilized in this work for investigating the suggested 2DOF controllers and compared their performance in all contracts of restructured systems. As per the simulation outcomes, the amalgamation of DPFC and UC with MFObased 2DOF PID-FOPDN shows low fluctuation rate in frequency and tie-line power. Besides, the settling times (ST) of two areas are 9.5 S for ΔF1, 8.2 S for ΔF2, and 10.15 S for ΔPtie. The robustness of the suggested controller has been verified by ±25% variations in system parameters and loading conditions

    Modelación y control de un invernadero experimental.

    Get PDF
    Agricultural systems such as greenhouses are difficult to control with classical regulators as a consequence of their great complexity and their non-linear dynamic behaviour. This project has been carried out with the purpose of modeling and controlling an experimental greenhouse, applying intelligent control such as neural networks, which allows controlling the environmental variables of temperature and humidity at the right time and thus the crop does not lose its properties, in addition, the loss of the crop will be avoided. One of the main objectives of this work is to solve the problems that arise in automated greenhouses. The transfer functions of the data obtained from temperature and humidity are used to obtain the appropriate models. The control that is implemented is an advanced control of neural networks NARMA-L2, which allows to control the plant in an adequate way. The results indicate a good and stable performance of the proposed controller. The security provided by the control system is appropriate since the data obtained are those desired in the simulation, the relationship of temperature and humidity can be simulated for different possible scenarios, guaranteeing the proper functioning of the control. The errors in stable state tend to zero, having a temperature steady state error of 0.03 and humidity with an error of 0.0036, allowing to improve the performance of the greenhouse.Los sistemas agrícolas como los invernaderos son difíciles de controlar con los reguladores clásicos como consecuencia de su gran complejidad y de su comportamiento dinámico no lineal. Este proyecto se ha realizado con la finalidad de realizar una modelación y control de un invernadero experimental, aplicando un control inteligente como son las redes neuronales, el cual permite controlar las variables ambientales de temperatura y humedad en el momento adecuado y así el cultivo no pierda sus propiedades, además, se evitará la pérdida del cultivo. Uno de los principales objetivos de este trabajo es dar solución a los problemas que se presentan en los invernaderos automatizados. Se utiliza las funciones de transferencia de los datos obtenidos de temperatura y humedad, para obtener los modelos adecuados. El control que se implementa es un control avanzado de redes neuronales NARMA-L2, el cual permite controlar a la planta de manera adecuada. Los resultados indican un desempeño bueno y estable del controlador propuesto. La seguridad que brinda el sistema de control es apropiada ya que los datos obtenidos son los deseados en la simulación, la relación de temperatura y humedad se pueden simular para diferentes escenarios posibles, garantizando el buen funcionamiento del control. Los errores en estado estable tienden a cero, teniendo un error en estado estacionario de la temperatura de 0,03 y la humedad con un error de 0,0036, permitiendo mejorar el rendimiento del invernadero
    corecore