7,035 research outputs found

    Modeling Data-Plane Power Consumption of Future Internet Architectures

    Full text link
    With current efforts to design Future Internet Architectures (FIAs), the evaluation and comparison of different proposals is an interesting research challenge. Previously, metrics such as bandwidth or latency have commonly been used to compare FIAs to IP networks. We suggest the use of power consumption as a metric to compare FIAs. While low power consumption is an important goal in its own right (as lower energy use translates to smaller environmental impact as well as lower operating costs), power consumption can also serve as a proxy for other metrics such as bandwidth and processor load. Lacking power consumption statistics about either commodity FIA routers or widely deployed FIA testbeds, we propose models for power consumption of FIA routers. Based on our models, we simulate scenarios for measuring power consumption of content delivery in different FIAs. Specifically, we address two questions: 1) which of the proposed FIA candidates achieves the lowest energy footprint; and 2) which set of design choices yields a power-efficient network architecture? Although the lack of real-world data makes numerous assumptions necessary for our analysis, we explore the uncertainty of our calculations through sensitivity analysis of input parameters

    Energy Saving Techniques for Phase Change Memory (PCM)

    Full text link
    In recent years, the energy consumption of computing systems has increased and a large fraction of this energy is consumed in main memory. Towards this, researchers have proposed use of non-volatile memory, such as phase change memory (PCM), which has low read latency and power; and nearly zero leakage power. However, the write latency and power of PCM are very high and this, along with limited write endurance of PCM present significant challenges in enabling wide-spread adoption of PCM. To address this, several architecture-level techniques have been proposed. In this report, we review several techniques to manage power consumption of PCM. We also classify these techniques based on their characteristics to provide insights into them. The aim of this work is encourage researchers to propose even better techniques for improving energy efficiency of PCM based main memory.Comment: Survey, phase change RAM (PCRAM

    Power Management Techniques for Data Centers: A Survey

    Full text link
    With growing use of internet and exponential growth in amount of data to be stored and processed (known as 'big data'), the size of data centers has greatly increased. This, however, has resulted in significant increase in the power consumption of the data centers. For this reason, managing power consumption of data centers has become essential. In this paper, we highlight the need of achieving energy efficiency in data centers and survey several recent architectural techniques designed for power management of data centers. We also present a classification of these techniques based on their characteristics. This paper aims to provide insights into the techniques for improving energy efficiency of data centers and encourage the designers to invent novel solutions for managing the large power dissipation of data centers.Comment: Keywords: Data Centers, Power Management, Low-power Design, Energy Efficiency, Green Computing, DVFS, Server Consolidatio

    HPC Accelerators with 3D Memory

    Get PDF
    Artículo invitado, publicado en las actas del congreso por IEEE Society Press. Páginas 320 a 328. ISBN: 978-1-5090-3593-9.DOI 10.1109/CSE-EUC-DCABES-2016.203After a decade evolving in the High Performance Computing arena, GPU-equipped supercomputers have con- quered the top500 and green500 lists, providing us unprecedented levels of computational power and memory bandwidth. This year, major vendors have introduced new accelerators based on 3D memory, like Xeon Phi Knights Landing by Intel and Pascal architecture by Nvidia. This paper reviews hardware features of those new HPC accelerators and unveils potential performance for scientific applications, with an emphasis on Hybrid Memory Cube (HMC) and High Bandwidth Memory (HBM) used by commercial products according to roadmaps already announced.Universidad de Málaga. Campus de Excelencia Internacional Andalucia Tec
    • …
    corecore