1,544 research outputs found

    Image fusion in the JPEG 2000 domain

    Get PDF

    Improving fusion of surveillance images in sensor networks using independent component analysis

    Get PDF

    Methods for characterising microphysical processes in plasmas

    Get PDF
    Advanced spectral and statistical data analysis techniques have greatly contributed to shaping our understanding of microphysical processes in plasmas. We review some of the main techniques that allow for characterising fluctuation phenomena in geospace and in laboratory plasma observations. Special emphasis is given to the commonalities between different disciplines, which have witnessed the development of similar tools, often with differing terminologies. The review is phrased in terms of few important concepts: self-similarity, deviation from self-similarity (i.e. intermittency and coherent structures), wave-turbulence, and anomalous transport.Comment: Space Science Reviews (2013), in pres

    Comparative study of Image Fusion Methods: A Review

    Full text link
    As the size and cost of sensors decrease, sensor networks are increasingly becoming an attractive method to collect information in a given area. However, one single sensor is not capable of providing all the required information,either because of their design or because of observational constraints. One possible solution to get all the required information about a particular scene or subject is data fusion.. A small number of metrics proposed so far provide only a rough, numerical estimate of fusion performance with limited understanding of the relative merits of different fusion schemes. This paper proposes a method for comprehensive, objective, image fusion performance characterization using a fusion evaluation framework based on gradient information representation. We give the framework of the overallnbsp system and explain its USAge method. The system has many functions: image denoising, image enhancement, image registration, image segmentation, image fusion, and fusion evaluation. This paper presents a literature review on some of the image fusion techniques for image fusion like, Laplace transform, Discrete Wavelet transform based fusion, Principal component analysis (PCA) based fusion etc. Comparison of all the techniques can be the better approach fornbsp future research

    Localization and Pattern Formation in Quantum Physics. I. Phenomena of Localization

    Full text link
    In these two related parts we present a set of methods, analytical and numerical, which can illuminate the behaviour of quantum system, especially in the complex systems. The key points demonstrating advantages of this approach are: (i) effects of localization of possible quantum states, more proper than "gaussian-like states"; (ii) effects of non-perturbative multiscales which cannot be calculated by means of perturbation approaches; (iii) effects of formation of complex quantum patterns from localized modes or classification and possible control of the full zoo of quantum states, including (meta) stable localized patterns (waveletons). We'll consider calculations of Wigner functions as the solution of Wigner-Moyal-von Neumann equation(s) corresponding to polynomial Hamiltonians. Modeling demonstrates the appearance of (meta) stable patterns generated by high-localized (coherent) structures or entangled/chaotic behaviour. We can control the type of behaviour on the level of reduced algebraical variational system. At the end we presented the qualitative definition of the Quantum Objects in comparison with their Classical Counterparts, which natural domain of definition is the category of multiscale/multiresolution decompositions according to the action of internal/hidden symmetry of the proper realization of scales of functional spaces. It gives rational natural explanation of such pure quantum effects as ``self-interaction''(self-interference) and instantaneous quantum interaction.Comment: LaTeX2e, spie.cls, 13 pages, 15 figures, submitted to Proc. of SPIE Meeting, The Nature of Light: What is a Photon? Optics & Photonics, SP200, San Diego, CA, July-August, 200

    A multiresolution framework for local similarity based image denoising

    Get PDF
    In this paper, we present a generic framework for denoising of images corrupted with additive white Gaussian noise based on the idea of regional similarity. The proposed framework employs a similarity function using the distance between pixels in a multidimensional feature space, whereby multiple feature maps describing various local regional characteristics can be utilized, giving higher weight to pixels having similar regional characteristics. An extension of the proposed framework into a multiresolution setting using wavelets and scale space is presented. It is shown that the resulting multiresolution multilateral (MRM) filtering algorithm not only eliminates the coarse-grain noise but can also faithfully reconstruct anisotropic features, particularly in the presence of high levels of noise
    corecore