320 research outputs found

    Extended Fault Taxonomy of SOA-Based Systems

    Get PDF
    Service Oriented Architecture (SOA) is considered as a standard for enterprise software development. The main characteristics of SOA are dynamic discovery and composition of software services in a heterogeneous environment. These properties pose newer challenges in fault management of SOA-based systems (SBS). A proper understanding of different faults in an SBS is very necessary for effective fault handling. A comprehensive three-fold fault taxonomy is presented here that covers distributed, SOA specific and non-functional faults in a holistic manner. A comprehensive fault taxonomy is a key starting point for providing techniques and methods for accessing the quality of a given system. In this paper, an attempt has been made to outline several SBSs faults into a well-structured taxonomy that may assist developers to plan suitable fault repairing strategies. Some commonly emphasized fault recovery strategies are also discussed. Some challenges that may occur during fault handling of SBSs are also mentioned

    Using Domain Ontology for Service Replacement Tasks: An Empirical Evaluation

    Get PDF
    Organizations increasingly use information technology (IT) to integrate their business processes into the processes of their suppliers, customers, and other third parties. An important IT approach is the realization of composite services that organize elementary software services under a shared workflow. Any failure of an elementary service can severely impact the process. The failed service must be examined and, ultimately, be replaced. In solving that task, the process designer must consider the quality-of-service (QoS) of the process. However, the heterogeneity of service descriptions puts the burden on the designer. This research empirically evaluates how designers can use a domain ontology, namely the QoS aggregation ontology, for the replacement task. We report on a laboratory experiment to compare the effectiveness and efficiency of using the ontology vis-à-vis an aggregation table. The results provide evidence for the usefulness of the domain ontology that specifies problem-solving knowledge required for a time-critical task

    A Calculus for Orchestration of Web Services

    Get PDF
    Service-oriented computing, an emerging paradigm for distributed computing based on the use of services, is calling for the development of tools and techniques to build safe and trustworthy systems, and to analyse their behaviour. Therefore, many researchers have proposed to use process calculi, a cornerstone of current foundational research on specification and analysis of concurrent, reactive, and distributed systems. In this paper, we follow this approach and introduce CWS, a process calculus expressly designed for specifying and combining service-oriented applications, while modelling their dynamic behaviour. We show that CWS can model all the phases of the life cycle of service-oriented applications, such as publication, discovery, negotiation, orchestration, deployment, reconfiguration and execution. We illustrate the specification style that CWS supports by means of a large case study from the automotive domain and a number of more specific examples drawn from it

    Adaptive Composition in Dynamic Service Environments

    Get PDF
    Due to distribution, participant autonomy and lack of local control, service-based systems operate in highly dynamic and uncertain environments. In the face of such dynamism and volatility, the ability to manage service changes and exceptions during composite service execution is a vital requirement. Most current adaptive composition approaches, however, fail to address service changes without causing undesirable disruptions in execution or considerably degrading the quality of the composite application. In response, this paper presents a novel adaptive execution approach, which efficiently handles service changes occurring at execution time, for both repair and optimisation purposes. The adaptation is performed as soon as possible and in parallel with the execution process, thus reducing interruption time, increasing the chance of a successful recovery, and producing the most optimal solution according to the current environment state. The effectiveness of the proposed approach is demonstrated both analytically and empirically through a case study evaluation applied in the framework of learning object composition. In particular, the results show that, even with frequent changes (e.g. 20 changes per service execution), or in the cases where interference with execution is non-preventable (e.g., when an executed service delivers unanticipated quality values), our approach manages to recover from the situation with minimal interruption

    Service Quality Assessment for Cloud-based Distributed Data Services

    Full text link
    The issue of less-than-100% reliability and trust-worthiness of third-party controlled cloud components (e.g., IaaS and SaaS components from different vendors) may lead to laxity in the QoS guarantees offered by a service-support system S to various applications. An example of S is a replicated data service to handle customer queries with fault-tolerance and performance goals. QoS laxity (i.e., SLA violations) may be inadvertent: say, due to the inability of system designers to model the impact of sub-system behaviors onto a deliverable QoS. Sometimes, QoS laxity may even be intentional: say, to reap revenue-oriented benefits by cheating on resource allocations and/or excessive statistical-sharing of system resources (e.g., VM cycles, number of servers). Our goal is to assess how well the internal mechanisms of S are geared to offer a required level of service to the applications. We use computational models of S to determine the optimal feasible resource schedules and verify how close is the actual system behavior to a model-computed \u27gold-standard\u27. Our QoS assessment methods allow comparing different service vendors (possibly with different business policies) in terms of canonical properties: such as elasticity, linearity, isolation, and fairness (analogical to a comparative rating of restaurants). Case studies of cloud-based distributed applications are described to illustrate our QoS assessment methods. Specific systems studied in the thesis are: i) replicated data services where the servers may be hosted on multiple data-centers for fault-tolerance and performance reasons; and ii) content delivery networks to geographically distributed clients where the content data caches may reside on different data-centers. The methods studied in the thesis are useful in various contexts of QoS management and self-configurations in large-scale cloud-based distributed systems that are inherently complex due to size, diversity, and environment dynamicity
    • …
    corecore