32 research outputs found

    A new Itinerary planning approach among multiple mobile agents in wireless sensor networks (WSN) to reduce energy consumption

    Get PDF
    one of the important challenges in wireless sensors networks (WSN) resides in energy consumption. In order to resolve this limitation, several solutions were proposed. Recently, the exploitation of mobile agent technologies in wireless sensor networks to optimize energy consumption attracts researchers. Despite their advantage as an ambitious solution, the itineraries followed by migrating mobile agents can surcharge the network and so have an impact on energy consumption. Many researches have dealt with itinerary planning in WSNs through the use of a single agent (SIP: Single agent Itinerary Planning) or multiple mobile agents (MIP: Multiple agents Itinerary Planning). However, the use of multi-agents causes the emergence of the data load unbalancing problem among mobile agents, where the geographical distance is the unique factor motivating to plan the itinerary of the agents. The data balancing factor has an important role especially in Wireless sensor networks multimedia that owns a considerable volume of data size. It helps to optimize the tasks duration and thus optimizes the overall answer time of the network.  In this paper, we provide a new MIP solution (GIGM-MIP) which is based not only on geographic information but also on the amount of data provided by each node to reduce the energy consumption of the network. The simulation experiments show that our approach is more efficient than other approaches in terms of task duration and the amount of energy consumption

    Determination of Itinerary Planning for Multiple Agents in Wireless Sensor Networks

    Get PDF
    The mobile agent is a new technology in wireless sensor networks that outperforms the traditional client/server architecture in terms of energy consumption, end to end delay and packet delivery ratio. Single mobile agent will not be efficient for large scale networks. Therefore, the use of multiple mobile agents will be an excellent solution to resolve the problem of the task duration especially for this kind of networks. The itinerary planning of mobile agents represents the main challenge to achieve the trade-off between energy consumption and end to end delay. In this article we present a new algorithm named Optimal Multi-Agents Itinerary Planning (OMIP). The source nodes are grouped into clusters and the sink sends a mobile agent to the cluster head of every cluster; which migrates between source nodes, collects and aggregates data before returning to the sink. The results of the simulations testify the efficiency of our algorithm against the existing algorithms of multi-agent itinerary planning. The performance gain is evident in terms of energy consumption, accumulated hop count and end to end delay of the tasks in the network

    Energy Efficient Designs for Collaborative Signal and Information Processing inWireless Sensor Networks

    Get PDF
    Collaborative signal and information processing (CSIP) plays an important role in the deployment of wireless sensor networks. Since each sensor has limited computing capability, constrained power usage, and limited sensing range, collaboration among sensor nodes is important in order to compensate for each other’s limitation as well as to improve the degree of fault tolerance. In order to support the execution of CSIP algorithms, distributed computing paradigm and clustering protocols, are needed, which are the major concentrations of this dissertation. In order to facilitate collaboration among sensor nodes, we present a mobile-agent computing paradigm, where instead of each sensor node sending local information to a processing center, as is typical in the client/server-based computing, the processing code is moved to the sensor nodes through mobile agents. We further conduct extensive performance evaluation versus the traditional client/server-based computing. Experimental results show that the mobile agent paradigm performs much better when the number of nodes is large while the client/server paradigm is advantageous when the number of nodes is small. Based on this result, we propose a hybrid computing paradigm that adopts different computing models within different clusters of sensor nodes. Either the client/server or the mobile agent paradigm can be employed within clusters or between clusters according to the different cluster configurations. This new computing paradigm can take full advantages of both client/server and mobile agent computing paradigms. Simulations show that the hybrid computing paradigm performs better than either the client/server or the mobile agent computing. The mobile agent itinerary has a significant impact on the overall performance of the sensor network. We thus formulate both the static mobile agent planning and the dynamic mobile agent planning as optimization problems. Based on the models, we present three itinerary planning algorithms. We have showed, through simulation, that the predictive dynamic itinerary performs the best under a wide range of conditions, thus making it particularly suitable for CSIP in wireless sensor networks. In order to facilitate the deployment of hybrid computing paradigm, we proposed a decentralized reactive clustering (DRC) protocol to cluster the sensor network in an energy-efficient way. The clustering process is only invoked by events occur in the sensor network. Nodes that do not detect the events are put into the sleep state to save energy. In addition, power control technique is used to minimize the transmission power needed. The advantages of DRC protocol are demonstrated through simulations

    Energy Efficient Routing Algorithm in Wireless Sensor Networks

    Get PDF
    This Wireless sensor network (WSN) is widely considered as one of the most important technologies for the twenty-first century, it provides the availability of small and low-cost sensor nodes with the ability of sensing different types of physical and environmental conditions, data processing, and wireless communication. Sensor nodes have a limited transmission range, and their processing and storage capabilities as well as their energy resources are also limited. Thus, optimized routing algorithms for wireless sensor networks should be utilized in order to maintain the routes in the network and to ensure reliable multi-hop communication under these conditions. Keywords: Wireless Sensor Networks, Energy Efficiency, Routing Protocols, Solar Sensors, Mobile Agent

    An effective data-collection scheme with AUV path planning in underwater wireless sensor networks

    Get PDF
    Data collection in underwater wireless sensor networks (UWSNs) using autonomous underwater vehicles (AUVs) is a more robust solution than traditional approaches, instead of transmitting data from each node to a destination node. However, the design of delay-aware and energy-efficient path planning for AUVs is one of the most crucial problems in collecting data for UWSNs. To reduce network delay and increase network lifetime, we proposed a novel reliable AUV-based data-collection routing protocol for UWSNs. The proposed protocol employs a route planning mechanism to collect data using AUVs. The sink node directs AUVs for data collection from sensor nodes to reduce energy consumption. First, sensor nodes are organized into clusters for better scalability, and then, these clusters are arranged into groups to assign an AUV to each group. Second, the traveling path for each AUV is crafted based on the Markov decision process (MDP) for the reliable collection of data. The simulation results affirm the effectiveness and efficiency of the proposed technique in terms of throughput, energy efficiency, delay, and reliability. © 2022 Wahab Khan et al

    Ecosystem-Driven Design of In-Home Terminals Based on Open Platform for the

    Get PDF
    Abstract—In-home healthcare services based on the Internet-of-Things (IoT) have great business potentials. To turn it into reality, a business ecosystem should be established first. Technical solutions should therefore aim for a cooperative ecosystem by meeting the interoperability, security, and system integration requirements. In this paper, we propose an ecosystem-driven design strategy and apply it in the design of an open-platform-based in-home healthcare terminal. A cooperative business ecosystem is formulated by merging the traditiona

    Adaptive learning-based resource management strategy in fog-to-cloud

    Get PDF
    Technology in the twenty-first century is rapidly developing and driving us into a new smart computing world, and emerging lots of new computing architectures. Fog-to-Cloud (F2C) is among one of them, which emerges to ensure the commitment for bringing the higher computing facilities near to the edge of the network and also help the large-scale computing system to be more intelligent. As the F2C is in its infantile state, therefore one of the biggest challenges for this computing paradigm is to efficiently manage the computing resources. Mainly, to address this challenge, in this work, we have given our sole interest for designing the initial architectural framework to build a proper, adaptive and efficient resource management mechanism in F2C. F2C has been proposed as a combined, coordinated and hierarchical computing platform, where a vast number of heterogeneous computing devices are participating. Notably, their versatility creates a massive challenge for effectively handling them. Even following any large-scale smart computing system, it can easily recognize that various kind of services is served for different purposes. Significantly, every service corresponds with the various tasks, which have different resource requirements. So, knowing the characteristics of participating devices and system offered services is giving advantages to build effective and resource management mechanism in F2C-enabled system. Considering these facts, initially, we have given our intense focus for identifying and defining the taxonomic model for all the participating devices and system involved services-tasks. In any F2C-enabled system consists of a large number of small Internet-of-Things (IoTs) and generating a continuous and colossal amount of sensing-data by capturing various environmental events. Notably, this sensing-data is one of the key ingredients for various smart services which have been offered by the F2C-enabled system. Besides that, resource statistical information is also playing a crucial role, for efficiently providing the services among the system consumers. Continuous monitoring of participating devices generates a massive amount of resource statistical information in the F2C-enabled system. Notably, having this information, it becomes much easier to know the device's availability and suitability for executing some tasks to offer some services. Therefore, ensuring better service facilities for any latency-sensitive services, it is essential to securely distribute the sensing-data and resource statistical information over the network. Considering these matters, we also proposed and designed a secure and distributed database framework for effectively and securely distribute the data over the network. To build an advanced and smarter system is necessarily required an effective mechanism for the utilization of system resources. Typically, the utilization and resource handling process mainly depend on the resource selection and allocation mechanism. The prediction of resources (e.g., RAM, CPU, Disk, etc.) usage and performance (i.e., in terms of task execution time) helps the selection and allocation process. Thus, adopting the machine learning (ML) techniques is much more useful for designing an advanced and sophisticated resource allocation mechanism in the F2C-enabled system. Adopting and performing the ML techniques in F2C-enabled system is a challenging task. Especially, the overall diversification and many other issues pose a massive challenge for successfully performing the ML techniques in any F2C-enabled system. Therefore, we have proposed and designed two different possible architectural schemas for performing the ML techniques in the F2C-enabled system to achieve an adaptive, advance and sophisticated resource management mechanism in the F2C-enabled system. Our proposals are the initial footmarks for designing the overall architectural framework for resource management mechanism in F2C-enabled system.La tecnologia del segle XXI avança ràpidament i ens condueix cap a un nou món intel·ligent, creant nous models d'arquitectures informàtiques. Fog-to-Cloud (F2C) és un d’ells, i sorgeix per garantir el compromís d’acostar les instal·lacions informàtiques a prop de la xarxa i també ajudar el sistema informàtic a gran escala a ser més intel·ligent. Com que el F2C es troba en un estat preliminar, un dels majors reptes d’aquest paradigma tecnològic és gestionar eficientment els recursos informàtics. Per fer front a aquest repte, en aquest treball hem centrat el nostre interès en dissenyar un marc arquitectònic per construir un mecanisme de gestió de recursos adequat, adaptatiu i eficient a F2C.F2C ha estat concebut com una plataforma informàtica combinada, coordinada i jeràrquica, on participen un gran nombre de dispositius heterogenis. La seva versatilitat planteja un gran repte per gestionar-los de manera eficaç. Els serveis que s'hi executen consten de diverses tasques, que tenen requisits de recursos diferents. Per tant, conèixer les característiques dels dispositius participants i dels serveis que ofereix el sistema és un requisit per dissenyar mecanismes eficaços i de gestió de recursos en un sistema habilitat per F2C. Tenint en compte aquests fets, inicialment ens hem centrat en identificar i definir el model taxonòmic per a tots els dispositius i sistemes implicats en l'execució de tasques de serveis. Qualsevol sistema habilitat per F2C inclou en un gran nombre de dispositius petits i connectats (conegut com a Internet of Things, o IoT) que generen una quantitat contínua i colossal de dades de detecció capturant diversos events ambientals. Aquestes dades són un dels ingredients clau per a diversos serveis intel·ligents que ofereix F2C. A més, el seguiment continu dels dispositius participants genera igualment una gran quantitat d'informació estadística. En particular, en tenir aquesta informació, es fa molt més fàcil conèixer la disponibilitat i la idoneïtat dels dispositius per executar algunes tasques i oferir alguns serveis. Per tant, per garantir millors serveis sensibles a la latència, és essencial distribuir de manera equilibrada i segura la informació estadística per la xarxa. Tenint en compte aquests assumptes, també hem proposat i dissenyat un entorn de base de dades segura i distribuïda per gestionar de manera eficaç i segura les dades a la xarxa. Per construir un sistema avançat i intel·ligent es necessita un mecanisme eficaç per a la gestió de l'ús dels recursos del sistema. Normalment, el procés d’utilització i manipulació de recursos depèn principalment del mecanisme de selecció i assignació de recursos. La predicció de l’ús i el rendiment de recursos (per exemple, RAM, CPU, disc, etc.) en termes de temps d’execució de tasques ajuda al procés de selecció i assignació. Adoptar les tècniques d’aprenentatge automàtic (conegut com a Machine Learning, o ML) és molt útil per dissenyar un mecanisme d’assignació de recursos avançat i sofisticat en el sistema habilitat per F2C. L’adopció i la realització de tècniques de ML en un sistema F2C és una tasca complexa. Especialment, la diversificació general i molts altres problemes plantegen un gran repte per realitzar amb èxit les tècniques de ML. Per tant, en aquesta recerca hem proposat i dissenyat dos possibles esquemes arquitectònics diferents per realitzar tècniques de ML en el sistema habilitat per F2C per aconseguir un mecanisme de gestió de recursos adaptatiu, avançat i sofisticat en un sistema F2C. Les nostres propostes són els primers passos per dissenyar un marc arquitectònic general per al mecanisme de gestió de recursos en un sistema habilitat per F2C.Postprint (published version
    corecore