17 research outputs found

    A neurodynamic optimization approach to constrained pseudoconvex optimization.

    Get PDF
    Guo, Zhishan.Thesis (M.Phil.)--Chinese University of Hong Kong, 2011.Includes bibliographical references (p. 71-82).Abstracts in English and Chinese.Abstract --- p.iAcknowledgement i --- p.iiChapter 1 --- Introduction --- p.1Chapter 1.1 --- Constrained Pseudoconvex Optimization --- p.1Chapter 1.2 --- Recurrent Neural Networks --- p.4Chapter 1.3 --- Thesis Organization --- p.7Chapter 2 --- Literature Review --- p.8Chapter 2.1 --- Pseudo convex Optimization --- p.8Chapter 2.2 --- Recurrent Neural Networks --- p.10Chapter 3 --- Model Description and Convergence Analysis --- p.17Chapter 3.1 --- Model Descriptions --- p.18Chapter 3.2 --- Global Convergence --- p.20Chapter 4 --- Numerical Examples --- p.27Chapter 4.1 --- Gaussian Optimization --- p.28Chapter 4.2 --- Quadratic Fractional Programming --- p.36Chapter 4.3 --- Nonlinear Convex Programming --- p.39Chapter 5 --- Real-time Data Reconciliation --- p.42Chapter 5.1 --- Introduction --- p.42Chapter 5.2 --- Theoretical Analysis and Performance Measurement --- p.44Chapter 5.3 --- Examples --- p.45Chapter 6 --- Real-time Portfolio Optimization --- p.53Chapter 6.1 --- Introduction --- p.53Chapter 6.2 --- Model Description --- p.54Chapter 6.3 --- Theoretical Analysis --- p.56Chapter 6.4 --- Illustrative Examples --- p.58Chapter 7 --- Conclusions and Future Works --- p.67Chapter 7.1 --- Concluding Remarks --- p.67Chapter 7.2 --- Future Works --- p.68Chapter A --- Publication List --- p.69Bibliography --- p.7

    Relating Spontaneous Activity and Cognitive States via NeuroDynamic Modeling

    Get PDF
    Stimulus-free brain dynamics form the basis of current knowledge concerning functional integration and segregation within the human brain. These relationships are typically described in terms of resting-state brain networks—regions which spontaneously coactivate. However, despite the interest in the anatomical mechanisms and biobehavioral correlates of stimulus-free brain dynamics, little is known regarding the relation between spontaneous brain dynamics and task-evoked activity. In particular, no computational framework has been previously proposed to unite spontaneous and task dynamics under a single, data-driven model. Model development in this domain will provide new insight regarding the mechanisms by which exogeneous stimuli and intrinsic neural circuitry interact to shape human cognition. The current work bridges this gap by deriving and validating a new technique, termed Mesoscale Individualized NeuroDynamic (MINDy) modeling, to estimate large-scale neural population models for individual human subjects using resting-state fMRI. A combination of ground-truth simulations and test-retest data are used to demonstrate that the approach is robust to various forms of noise, motion, and data processing choices. The MINDy formalism is then extended to simultaneously estimating neural population models and the neurovascular coupling which gives rise to BOLD fMRI. In doing so, I develop and validate a new optimization framework for simultaneously estimating system states and parameters. Lastly, MINDy models derived from resting-state data are used to predict task-based activity and remove the effects of intrinsic dynamics. Removing the MINDy model predictions from task fMRI, enables separation of exogenously-driven components of activity from their indirect consequences (the model predictions). Results demonstrate that removing the predicted intrinsic dynamics improves detection of event-triggered and sustained responses across four cognitive tasks. Together, these findings validate the MINDy framework and demonstrate that MINDy models predict brain dynamics across contexts. These dynamics contribute to the variance of task-evoked brain activity between subjects. Removing the influence of intrinsic dynamics improves the estimation of task effects

    A Comprehensive Review of Bio-Inspired Optimization Algorithms Including Applications in Microelectronics and Nanophotonics

    Get PDF
    The application of artificial intelligence in everyday life is becoming all-pervasive and unavoidable. Within that vast field, a special place belongs to biomimetic/bio-inspired algorithms for multiparameter optimization, which find their use in a large number of areas. Novel methods and advances are being published at an accelerated pace. Because of that, in spite of the fact that there are a lot of surveys and reviews in the field, they quickly become dated. Thus, it is of importance to keep pace with the current developments. In this review, we first consider a possible classification of bio-inspired multiparameter optimization methods because papers dedicated to that area are relatively scarce and often contradictory. We proceed by describing in some detail some more prominent approaches, as well as those most recently published. Finally, we consider the use of biomimetic algorithms in two related wide fields, namely microelectronics (including circuit design optimization) and nanophotonics (including inverse design of structures such as photonic crystals, nanoplasmonic configurations and metamaterials). We attempted to keep this broad survey self-contained so it can be of use not only to scholars in the related fields, but also to all those interested in the latest developments in this attractive area

    From descriptive connectome to mechanistic connectome: Generative modeling in functional magnetic resonance imaging analysis

    Get PDF
    As a newly emerging field, connectomics has greatly advanced our understanding of the wiring diagram and organizational features of the human brain. Generative modeling-based connectome analysis, in particular, plays a vital role in deciphering the neural mechanisms of cognitive functions in health and dysfunction in diseases. Here we review the foundation and development of major generative modeling approaches for functional magnetic resonance imaging (fMRI) and survey their applications to cognitive or clinical neuroscience problems. We argue that conventional structural and functional connectivity (FC) analysis alone is not sufficient to reveal the complex circuit interactions underlying observed neuroimaging data and should be supplemented with generative modeling-based effective connectivity and simulation, a fruitful practice that we term “mechanistic connectome.” The transformation from descriptive connectome to mechanistic connectome will open up promising avenues to gain mechanistic insights into the delicate operating principles of the human brain and their potential impairments in diseases, which facilitates the development of effective personalized treatments to curb neurological and psychiatric disorders

    Machine Learning

    Get PDF
    Machine Learning can be defined in various ways related to a scientific domain concerned with the design and development of theoretical and implementation tools that allow building systems with some Human Like intelligent behavior. Machine learning addresses more specifically the ability to improve automatically through experience

    Design and development of adaptive EV charging management for urban traffic environments

    Get PDF
    Due to the world’s shortage of fossil fuels, increasing energy demand, oil prices, environmental concerns such as climate change and air pollution, seeking for alternative energy has emerged as a critical study area. Transportation systems is one of the main contributors to air pollution and consumers of energy. Electric Vehicles (EVs) is considered as a highly desirable solution for a new sustainable transportation for many powerful advantages, such as energy efficient, environmentally friendly and may benefit from increased renewable energy technologies in the future. Despite all the acknowledged advantages and recent developments in terms of reducing the environmental impact, noise reduction and energy efficiency, the electric mobility market is still below the expectations. Among the most challenges that limit the market penetration of EVs as well as achieving a sustainable mobility system are the efficient distribution of adequate Charging Stations (CSs) and also determining the best CSs for EVs in metropolitan environments. This thesis is concerned in determining the optimal placement of EVCSs and the efficient assignment of EVs to CSs. To accomplish this, we thoroughly examine the interactions between EVs, CSs, and Electrical Grids (EGs). First, a novel energy efficient scheme to find the optimal placement of EVCSs are presented, based on minimizing the energy consumption of EVs to reach CSs. We then propose a comprehensive approach to find the optimal assignment of EVs to CSs based on optimization of EV users’ QoE. Finally, we proposed a reinforcement learning-based assignment scheme for EVs to CSs in urban areas, aiming at minimizing the total cost of charging EVs and reduce the overload on EGs. By comparing the obtained results of the proposed approaches with different scenarios and algorithms, it was concluded that the presented approaches in this thesis are effective in solving the problems of EVCS placement and EVs assignment

    Computational intelligence approaches to robotics, automation, and control [Volume guest editors]

    Get PDF
    No abstract available

    Evolutionary Computation 2020

    Get PDF
    Intelligent optimization is based on the mechanism of computational intelligence to refine a suitable feature model, design an effective optimization algorithm, and then to obtain an optimal or satisfactory solution to a complex problem. Intelligent algorithms are key tools to ensure global optimization quality, fast optimization efficiency and robust optimization performance. Intelligent optimization algorithms have been studied by many researchers, leading to improvements in the performance of algorithms such as the evolutionary algorithm, whale optimization algorithm, differential evolution algorithm, and particle swarm optimization. Studies in this arena have also resulted in breakthroughs in solving complex problems including the green shop scheduling problem, the severe nonlinear problem in one-dimensional geodesic electromagnetic inversion, error and bug finding problem in software, the 0-1 backpack problem, traveler problem, and logistics distribution center siting problem. The editors are confident that this book can open a new avenue for further improvement and discoveries in the area of intelligent algorithms. The book is a valuable resource for researchers interested in understanding the principles and design of intelligent algorithms

    External Nonparametric Memory in Deep Learning

    Full text link
    Deep Neural Networks are limited in their ability to access and manipulate external knowledge after training. This capability is desirable; information access can be localized for interpretability, the external information itself may be modified improving editability, and external systems can be used for retrieval and storage, freeing up internal parameters that would otherwise be required to memorize knowledge. This dissertation presents three such approaches that augment deep neural networks with various forms external memory, achieving state-of-the-art results across multiple benchmarks and sub-fields. First, we examine the limits of retrieval alone in Sample-Efficient Reinforcement Learning (RL) setting. We propose a method, NAIT, that is purely memory based, but is able to achieve performance comparable with the best neural models on the ATARI100k benchmark. Because NAIT does not make use of parametric function approximation, and instead approximates only locally, it is extremely computationally efficient, reducing the run-time for a full sweep over ATARI100k from days to minutes. NAIT provides a strong counterpoint to the prevailing notion that retrieval based lazy learning approaches are too slow to be practically useful in RL. Next, we combine the promising non-parametric retrieval approach of NAIT with large image and text encoders for the task of Long-Tail Visual Recognition. This method, Retrieval Augmented Classification (RAC), achieves state-of-the art performance on the highly competitive long-tail datasets iNaturalist2018 and Places365-LT. This work is one of the first systems to effectively combine parametric and non-parametric approaches in Computer Vision. Most promisingly, we observe RAC's retrieval component achieves its highest per-class accuracies on sparse, infrequent classes, indicating non-parametric memory is an effective mechanism to model the `long-tail' of world knowledge. Finally, we move beyond standard single-step retrieval and investigate multi-step retrieval over graphs of sentences for the task of Reading Comprehension. We first propose a mechanism to effectively construct such graphs from collections of documents, and then learn a general traversal policy over such graphs, conditioned on the query. We demonstrate the combination of this retriever with existing models both consistently boosts accuracy and reduces training time by 2-3x
    corecore