25 research outputs found

    Comprehensive review on controller for leader-follower robotic system

    Get PDF
    985-1007This paper presents a comprehensive review of the leader-follower robotics system. The aim of this paper is to find and elaborate on the current trends in the swarm robotic system, leader-follower, and multi-agent system. Another part of this review will focus on finding the trend of controller utilized by previous researchers in the leader-follower system. The controller that is commonly applied by the researchers is mostly adaptive and non-linear controllers. The paper also explores the subject of study or system used during the research which normally employs multi-robot, multi-agent, space flying, reconfigurable system, multi-legs system or unmanned system. Another aspect of this paper concentrates on the topology employed by the researchers when they conducted simulation or experimental studies

    A Novel Mobile Robot Navigation System Using Neuro-Fuzzy Rule-Based Optimization Technique

    Get PDF
    Abstract: A new novel approach to control the autonomous mobile robot that moved along a collision free trajectory until it reaches its target is proposed in this study. The approach taken here utilizes a hybrid neuro-fuzzy method where the neural network effectively chooses the optimum number of activation rules in order to reduce computational time for real-time applications. Initially, a classical fuzzy logic controller has been constructed for the path planning problem. The inference engine required 625 if-then rules for its implementation. Then the neural network is implemented to choose the optimum number of the activation rules based on the input crisp values. Simulation experiments were conducted to test the performance of the developed controller and the results proved that the approach to be practical for real time applications. The proposed neuro-fuzzy optimization controller is evaluated subjectively and objectively with other fuzzy approaches and also the processing time is taken in consideration

    Neural Networks in Mobile Robot Motion

    Get PDF
    This paper deals with a path planning and intelligent control of an autonomous robot which should move safely in partially structured environment. This environment may involve any number of obstacles of arbitrary shape and size; some of them are allowed to move. We describe our approach to solving the motion-planning problem in mobile robot control using neural networks-based technique. Our method of the construction of a collision-free path for moving robot among obstacles is based on two neural networks. The first neural network is used to determine the "free" space using ultrasound range finder data. The second neural network "finds" a safe direction for the next robot section of the path in the workspace while avoiding the nearest obstacles. Simulation examples of generated path with proposed techniques will be presented.Comment: 9 Page

    Network-centric Localization in MANETs Based on Particle Swarm Optimization

    Get PDF
    There exist several application scenarios of mobile ad hoc networks (MANET) in which the nodes need to locate a target or surround it. Severe resource constraints in MANETs call for energy efficient target localization and collaborative navigation. Centralized control of MANET nodes is not an attractive solution due to its high network utilization that can result in congestions and delays. In nature, many colonies of biological species (such as a flock of birds) can achieve effective collaborative navigation without any centralized control. Particle swarm optimization (PSO), a popular swarm intelligence approach that models social dynamics of a biological swarm is proposed in this paper for network-centric target localization in MANETs that are enhanced by mobile robots. Simulation study of two application scenarios is conducted. While one scenario focuses on quick target localization, the other aims at convergence of MANET nodes around the target. Reduction of swarm size during PSO search is proposed for accelerated convergence. The results of the study show that the proposed algorithm is effective in network-centric collaborative navigation. Emergence of converging behavior of MANET nodes is observed

    Type-2 Fuzzy Control of an Automatic Guided Vehicle for Wall-Following

    Get PDF

    Reinforcement Learning Algorithms for Robotic Navigation in Dynamic Environments

    Get PDF
    Electrical Engineering Technolog

    Navigating multiple simple-airplanes in 3D workspace

    Full text link

    Mobile Robot Navigation in Static and Dynamic Environments using Various Soft Computing Techniques

    Get PDF
    The applications of the autonomous mobile robot in many fields such as industry, space, defence and transportation, and other social sectors are growing day by day. The mobile robot performs many tasks such as rescue operation, patrolling, disaster relief, planetary exploration, and material handling, etc. Therefore, an intelligent mobile robot is required that could travel autonomously in various static and dynamic environments. The present research focuses on the design and implementation of the intelligent navigation algorithms, which is capable of navigating a mobile robot autonomously in static as well as dynamic environments. Navigation and obstacle avoidance are one of the most important tasks for any mobile robots. The primary objective of this research work is to improve the navigation accuracy and efficiency of the mobile robot using various soft computing techniques. In this research work, Hybrid Fuzzy (H-Fuzzy) architecture, Cascade Neuro-Fuzzy (CN-Fuzzy) architecture, Fuzzy-Simulated Annealing (Fuzzy-SA) algorithm, Wind Driven Optimization (WDO) algorithm, and Fuzzy-Wind Driven Optimization (Fuzzy-WDO) algorithm have been designed and implemented to solve the navigation problems of a mobile robot in different static and dynamic environments. The performances of these proposed techniques are demonstrated through computer simulations using MATLAB software and implemented in real time by using experimental mobile robots. Furthermore, the performances of Wind Driven Optimization algorithm and Fuzzy-Wind Driven Optimization algorithm are found to be most efficient (in terms of path length and navigation time) as compared to rest of the techniques, which verifies the effectiveness and efficiency of these newly built techniques for mobile robot navigation. The results obtained from the proposed techniques are compared with other developed techniques such as Fuzzy Logics, Genetic algorithm (GA), Neural Network, and Particle Swarm Optimization (PSO) algorithm, etc. to prove the authenticity of the proposed developed techniques
    corecore