2,312 research outputs found

    A neural network-based controller for a single-link flexible manipulator using the inverse dynamics approach

    Get PDF
    This thesis presents an intelligent strategy for controlling the tip position of a flexible-link manipulator. Motivated by the well-known inverse dynamics control approach for rigid-link manipulators, two multi-layer feedforward neural networks are developed to learn the nonlinearities of the system dynamics. The re-defined output scheme is used by feeding back this output to guarantee the minimum phase behavior of the resulting closed-loop system. No a priori knowledge about the nonlinearities of the system is needed where the payload mass is also assumed to be unknown. The weights of the networks are adjusted using a modified on-line error backpropagation algorithm that is based on the propagation of the redefined output error, derivative of this error and the tip deflection of the manipulator. Numerical simulations as well as real-time controller implementation on an experimental setup are carried out. The results achieved by the proposed neural network-based controller are compared in simulations and experimentally with conventional PD-type and inverse dynamics controls to substantiate and demonstrate the advantages and the promising potentials of this scheme

    Neural network-based control of flexible-link manipulators

    Get PDF
    The problem of modeling and control of flexible-link manipulators has received much attention in the past several years. There are a number of potential advantages arising from the use of light-weight flexible-link manipulators, such as faster operation, lower energy consumption, and higher load-carrying capacity. However, structural flexibility causes many difficulties in modeling the manipulator dynamics and guaranteeing stable and efficient motion of the manipulator end-effector. Control difficulties are mainly due to the non-colocated nature of the sensor and actuator position, which results in unstable zero dynamics. Further complications arise because of the highly nonlinear nature of the system and the difficulty involved in accurately modeling various friction and backlash terms. Control strategies that ignore these problems generally fail to provide satisfactory closed-loop performance. This dissertation presents experimental evaluation on the performance of neural network-based controllers for tip position tracking of flexible-link manipulators. The controllers are designed by utilizing the output redefinition approach to overcome the problem caused by the non-minimum phase characteristic of the flexible-link system. Four different neural network schemes are proposed. The first two schemes are developed by using a modified version of the "feedback-error-learning" approach to learn the inverse dynamics of the flexible manipulator. The neural networks are trained and employed as online controllers. Both schemes require only a linear model of the system for defining the new outputs and for designing conventional PD-type controllers. This assumption is relaxed in the third and fourth schemes. In the third scheme, the controller is designed based on tracking the hub position while controlling the elastic deflection at the tip. In the fourth scheme which employs two neural networks, the first network (referred to as the output neural network) is responsible for specifying an appropriate output for ensuring minimum phase behavior of the system. The second neural network is responsible for implementing an inverse dynamics controller. Both networks are trained online. Finally, the four proposed neural network controllers are implemented oil a single flexible-link experimental test-bed. Experimental and simulation results are presented to illustrate the advantages and improved performance of the proposed tip position tracking controllers over the conventional PD-type controllers in the presence of unmodeled dynamics such as hub friction and stiction and payload variations

    Benchmarking Cerebellar Control

    Get PDF
    Cerebellar models have long been advocated as viable models for robot dynamics control. Building on an increasing insight in and knowledge of the biological cerebellum, many models have been greatly refined, of which some computational models have emerged with useful properties with respect to robot dynamics control. Looking at the application side, however, there is a totally different picture. Not only is there not one robot on the market which uses anything remotely connected with cerebellar control, but even in research labs most testbeds for cerebellar models are restricted to toy problems. Such applications hardly ever exceed the complexity of a 2 DoF simulated robot arm; a task which is hardly representative for the field of robotics, or relates to realistic applications. In order to bring the amalgamation of the two fields forwards, we advocate the use of a set of robotics benchmarks, on which existing and new computational cerebellar models can be comparatively tested. It is clear that the traditional approach to solve robotics dynamics loses ground with the advancing complexity of robotic structures; there is a desire for adaptive methods which can compete as traditional control methods do for traditional robots. In this paper we try to lay down the successes and problems in the fields of cerebellar modelling as well as robot dynamics control. By analyzing the common ground, a set of benchmarks is suggested which may serve as typical robot applications for cerebellar models

    Parametric motion control of robotic arms: A biologically based approach using neural networks

    Get PDF
    A neural network based system is presented which is able to generate point-to-point movements of robotic manipulators. The foundation of this approach is the use of prototypical control torque signals which are defined by a set of parameters. The parameter set is used for scaling and shaping of these prototypical torque signals to effect a desired outcome of the system. This approach is based on neurophysiological findings that the central nervous system stores generalized cognitive representations of movements called synergies, schemas, or motor programs. It has been proposed that these motor programs may be stored as torque-time functions in central pattern generators which can be scaled with appropriate time and magnitude parameters. The central pattern generators use these parameters to generate stereotypical torque-time profiles, which are then sent to the joint actuators. Hence, only a small number of parameters need to be determined for each point-to-point movement instead of the entire torque-time trajectory. This same principle is implemented for controlling the joint torques of robotic manipulators where a neural network is used to identify the relationship between the task requirements and the torque parameters. Movements are specified by the initial robot position in joint coordinates and the desired final end-effector position in Cartesian coordinates. This information is provided to the neural network which calculates six torque parameters for a two-link system. The prototypical torque profiles (one per joint) are then scaled by those parameters. After appropriate training of the network, our parametric control design allowed the reproduction of a trained set of movements with relatively high accuracy, and the production of previously untrained movements with comparable accuracy. We conclude that our approach was successful in discriminating between trained movements and in generalizing to untrained movements

    Modeling and Control of Flexible Link Manipulators

    Get PDF
    Autonomous maritime navigation and offshore operations have gained wide attention with the aim of reducing operational costs and increasing reliability and safety. Offshore operations, such as wind farm inspection, sea farm cleaning, and ship mooring, could be carried out autonomously or semi-autonomously by mounting one or more long-reach robots on the ship/vessel. In addition to offshore applications, long-reach manipulators can be used in many other engineering applications such as construction automation, aerospace industry, and space research. Some applications require the design of long and slender mechanical structures, which possess some degrees of flexibility and deflections because of the material used and the length of the links. The link elasticity causes deflection leading to problems in precise position control of the end-effector. So, it is necessary to compensate for the deflection of the long-reach arm to fully utilize the long-reach lightweight flexible manipulators. This thesis aims at presenting a unified understanding of modeling, control, and application of long-reach flexible manipulators. State-of-the-art dynamic modeling techniques and control schemes of the flexible link manipulators (FLMs) are discussed along with their merits, limitations, and challenges. The kinematics and dynamics of a planar multi-link flexible manipulator are presented. The effects of robot configuration and payload on the mode shapes and eigenfrequencies of the flexible links are discussed. A method to estimate and compensate for the static deflection of the multi-link flexible manipulators under gravity is proposed and experimentally validated. The redundant degree of freedom of the planar multi-link flexible manipulator is exploited to minimize vibrations. The application of a long-reach arm in autonomous mooring operation based on sensor fusion using camera and light detection and ranging (LiDAR) data is proposed.publishedVersio

    Advanced Strategies for Robot Manipulators

    Get PDF
    Amongst the robotic systems, robot manipulators have proven themselves to be of increasing importance and are widely adopted to substitute for human in repetitive and/or hazardous tasks. Modern manipulators are designed complicatedly and need to do more precise, crucial and critical tasks. So, the simple traditional control methods cannot be efficient, and advanced control strategies with considering special constraints are needed to establish. In spite of the fact that groundbreaking researches have been carried out in this realm until now, there are still many novel aspects which have to be explored
    corecore