706 research outputs found

    Cortical Dynamics of Visual Motion Perception: Short-Range and Long Range Apparent Motion

    Full text link
    This article describes further evidence for a new neural network theory of biological motion perception that is called a Motion Boundary Contour System. This theory clarifies why parallel streams Vl-> V2 and Vl-> MT exist for static form and motion form processing among the areas Vl, V2, and MT of visual cortex. The Motion Boundary Contour System consists of several parallel copies, such that each copy is activated by a different range of receptive field sizes. Each copy is further subdivided into two hierarchically organized subsystems: a Motion Oriented Contrast Filter, or MOC Filter, for preprocessing moving images; and a Cooperative-Competitive Feedback Loop, or CC Loop, for generating emergent boundary segmentations of the filtered signals. The present article uses the MOC Filter to explain a variety of classical and recent data about short-range and long-range apparent motion percepts that have not yet been explained by alternative models. These data include split motion; reverse-contrast gamma motion; delta motion; visual inertia; group motion in response to a reverse-contrast Ternus display at short interstimulus intervals; speed-up of motion velocity as interfiash distance increases or flash duration decreases; dependence of the transition from element motion to group motion on stimulus duration and size; various classical dependencies between flash duration, spatial separation, interstimulus interval, and motion threshold known as Korte's Laws; and dependence of motion strength on stimulus orientation and spatial frequency. These results supplement earlier explanations by the model of apparent motion data that other models have not explained; a recent proposed solution of the global aperture problem, including explanations of motion capture and induced motion; an explanation of how parallel cortical systems for static form perception and motion form perception may develop, including a demonstration that these parallel systems are variations on a common cortical design; an explanation of why the geometries of static form and motion form differ, in particular why opposite orientations differ by 90°, whereas opposite directions differ by 180°, and why a cortical stream Vl -> V2 -> MT is needed; and a summary of how the main properties of other motion perception models can be assimilated into different parts of the Motion Boundary Contour System design.Air Force Office of Scientific Research (90-0175); Army Research Office (DAAL-03-88-K0088); Defense Advanced Research Projects Agency (AFOSR-90-0083); Hughes Aircraft Company (S1-903136

    How Is a Moving Target Continuously Tracked Behind Occluding Cover?

    Full text link
    Office of Naval Research (N00014-95-1-0657, N00014-95-1-0409

    Brain maturation during adolescence and young adulthood - an EEG study

    Get PDF
    Objective: Adolescence is a period of major maturational changes in the brain. It is particularly the maturation of the frontal cortex and its interactions with other brain regions that dominates this late stage of development and has important implications for the cognitive abilities during the entire adult life. Methods: In this thesis, developmental changes in the delta (0 - 4 Hz), theta (4 - 7 Hz) and gamma (28 - 48 Hz) frequency bands were investigated in adolescents (13 - 15 years) and adults (20 - 27 years) during resting and cognitive states. Four tasks were conducted: the spontaneous EEG (eyes-open), the ambiguous task, the unambiguous task and the visual oddball task. During the ambiguous task, participants were exposed to the Stroboscopic Ambiguous Motion (SAM) paradigm. SAM is a multistable stimulus that, when viewed continuously, induces internally-generated changes in the perceived direction of motion. For the unambiguous task, a modified version of the SAM was used. In this case, the perceived direction of motion was controlled externally. In the visual oddball task, randomly interspersed targets had to be identified in a train of frequent non-targets. Single-trial amplitudes of delta, theta and gamma activity obtained during the spontaneous EEG were compared between the groups to assess general maturational changes in the developing brain. The task-related enhancement of the oscillatory activity was compared between the groups in order to assess developmental changes in task performance. Results: The previous findings of delta and theta amplitudes decreasing with age during the spontaneous EEG were replicated. Similarly to previous studies, our results also indicate that for spontaneous EEG gamma amplitudes do not profoundly differ between adolescents and adults. Moreover, the present study supports previous findings from adult research which have established a functional relationship between delta, theta and gamma activities and higher cognitive processes. It has further been found that the developmental changes correlated with task difficulty. Only for the - most challenging - ambiguous task the gamma oscillations were found to reflect a change in task-related cortical processing during adolescence, whereas no age-related differences of gamma responses were detected for less demanding tasks (the unambiguous and visual oddball tasks). The event-related theta responses were found to increase with age for the ambiguous and visual oddball tasks and did not depend on age for the unambiguous task. Furthermore, the event-related delta responses increased with age for all tasks. Conclusions: The main finding of this study is that functional networks of delta, theta and gamma activity undergo maturational changes during adolescence. The found differences in the task-related activations may indicate a protracted development of higher-order cognitive processes during adolescence. The developmental changes of task-related activations seem to vary with task difficulty and frequency band. Significance: Systematic studies on developmental changes of brain oscillations in cognitive tasks are still infrequent and specifically the time period of adolescence has been rarely investigated. The typical age of onset for mental disorders, such as schizophrenia, is the late stages or shortly after the onset of adolescence, rendering the outcome of brain maturation during this period of immense importance for life-long mental health. Thus, it is critical to extend our understanding of the mechanism behind the appearance of cognitive functions during adolescence

    What Influences the Relative Proportion of ‘Rigid Rotation’ Versus ‘Non-Rigid Deformation’ in a Bistable Stroboscopic Motion Display

    Get PDF
    When observers are presented with a bistable stroboscopic display of an object that appears to transform over time in three-dimensional (3D) space, the dominance of one percept over another is influenced both by stimulus parameters and by cognitive factors. Two experiments were designed to reveal which of several manipulated variables influence most strongly which of two responses is more often observed, one being termed ‘Rigid Rotation’ and the other termed ‘Non-rigid Deformation.’ These two responses were clearly distinguished when drawings of a 3D rectangular box were presented stroboscopically in a two-frame animation with precise control over the Interstimulus Interval (ISI). In the first experiment, the relative dominance of the ‘Rigid Rotation’ response was reduced by changing the colour of one surface of the rectangular box in a manner that was inconsistent with the rotation of the box. Similarly, the relative dominance of the ‘Non-rigid Deformation’ response was reduced by changing the colour of one surface of the rectangular box in a manner that was inconsistent with deformation of the box. In the second experiment, the changes in the relative dominance of the competing motion percepts were observed after prolonged viewing of four different adapting stimuli. The adaptation aftereffects were shown to depend more upon the Interstimulus Interval (ISI) of the stroboscopic display of the adapting stimulus than upon what motion was reportedly ‘seen’ during the viewing of the adapting stimulus. Ultimately, the adaption aftereffect revealed that the relative dominance of the two movement percepts was affected most strongly by the manipulation of a single temporal variable – the ISI. Nonetheless, the results of the first experiment confirmed the influence of surface colour variations on ‘Rigid Rotation’ versus ‘Non-rigid Deformation’ response

    Modular MRI Guided Device Development System: Development, Validation and Applications

    Get PDF
    Since the first robotic surgical intervention was performed in 1985 using a PUMA industrial manipulator, development in the field of surgical robotics has been relatively fast paced, despite the tremendous costs involved in developing new robotic interventional devices. This is due to the clear advantages to augmented a clinicians skill and dexterity with the precision and reliability of computer controlled motion. A natural extension of robotic surgical intervention is the integration of image guided interventions, which give the promise of reduced trauma, procedure time and inaccuracies. Despite magnetic resonance imaging (MRI) being one of the most effective imaging modalities for visualizing soft tissue structures within the body, MRI guided surgical robotics has been frustrated by the high magnetic field in the MRI image space and the extreme sensitivity to electromagnetic interference. The primary contributions of this dissertation relate to enabling the use of direct, live MR imaging to guide and assist interventional procedures. These are the two focus areas: creation both of an integrated MRI-guided development platform and of a stereotactic neural intervention system. The integrated series of modules of the development platform represent a significant advancement in the practice of creating MRI guided mechatronic devices, as well as an understanding of design requirements for creating actuated devices to operate within a diagnostic MRI. This knowledge was gained through a systematic approach to understanding, isolating, characterizing, and circumventing difficulties associated with developing MRI-guided interventional systems. These contributions have been validated on the levels of the individual modules, the total development system, and several deployed interventional devices. An overview of this work is presented with a summary of contributions and lessons learned along the way
    • …
    corecore