1,034 research outputs found

    Learning to Singulate Objects using a Push Proposal Network

    Full text link
    Learning to act in unstructured environments, such as cluttered piles of objects, poses a substantial challenge for manipulation robots. We present a novel neural network-based approach that separates unknown objects in clutter by selecting favourable push actions. Our network is trained from data collected through autonomous interaction of a PR2 robot with randomly organized tabletop scenes. The model is designed to propose meaningful push actions based on over-segmented RGB-D images. We evaluate our approach by singulating up to 8 unknown objects in clutter. We demonstrate that our method enables the robot to perform the task with a high success rate and a low number of required push actions. Our results based on real-world experiments show that our network is able to generalize to novel objects of various sizes and shapes, as well as to arbitrary object configurations. Videos of our experiments can be viewed at http://robotpush.cs.uni-freiburg.deComment: International Symposium on Robotics Research (ISRR) 2017, videos: http://robotpush.cs.uni-freiburg.d

    Learning to Navigate Cloth using Haptics

    Full text link
    We present a controller that allows an arm-like manipulator to navigate deformable cloth garments in simulation through the use of haptic information. The main challenge of such a controller is to avoid getting tangled in, tearing or punching through the deforming cloth. Our controller aggregates force information from a number of haptic-sensing spheres all along the manipulator for guidance. Based on haptic forces, each individual sphere updates its target location, and the conflicts that arise between this set of desired positions is resolved by solving an inverse kinematic problem with constraints. Reinforcement learning is used to train the controller for a single haptic-sensing sphere, where a training run is terminated (and thus penalized) when large forces are detected due to contact between the sphere and a simplified model of the cloth. In simulation, we demonstrate successful navigation of a robotic arm through a variety of garments, including an isolated sleeve, a jacket, a shirt, and shorts. Our controller out-performs two baseline controllers: one without haptics and another that was trained based on large forces between the sphere and cloth, but without early termination.Comment: Supplementary video available at https://youtu.be/iHqwZPKVd4A. Related publications http://www.cc.gatech.edu/~karenliu/Robotic_dressing.htm

    The State of Lifelong Learning in Service Robots: Current Bottlenecks in Object Perception and Manipulation

    Get PDF
    Service robots are appearing more and more in our daily life. The development of service robots combines multiple fields of research, from object perception to object manipulation. The state-of-the-art continues to improve to make a proper coupling between object perception and manipulation. This coupling is necessary for service robots not only to perform various tasks in a reasonable amount of time but also to continually adapt to new environments and safely interact with non-expert human users. Nowadays, robots are able to recognize various objects, and quickly plan a collision-free trajectory to grasp a target object in predefined settings. Besides, in most of the cases, there is a reliance on large amounts of training data. Therefore, the knowledge of such robots is fixed after the training phase, and any changes in the environment require complicated, time-consuming, and expensive robot re-programming by human experts. Therefore, these approaches are still too rigid for real-life applications in unstructured environments, where a significant portion of the environment is unknown and cannot be directly sensed or controlled. In such environments, no matter how extensive the training data used for batch learning, a robot will always face new objects. Therefore, apart from batch learning, the robot should be able to continually learn about new object categories and grasp affordances from very few training examples on-site. Moreover, apart from robot self-learning, non-expert users could interactively guide the process of experience acquisition by teaching new concepts, or by correcting insufficient or erroneous concepts. In this way, the robot will constantly learn how to help humans in everyday tasks by gaining more and more experiences without the need for re-programming

    Toward Robots with Peripersonal Space Representation for Adaptive Behaviors

    Get PDF
    The abilities to adapt and act autonomously in an unstructured and human-oriented environment are necessarily vital for the next generation of robots, which aim to safely cooperate with humans. While this adaptability is natural and feasible for humans, it is still very complex and challenging for robots. Observations and findings from psychology and neuroscience in respect to the development of the human sensorimotor system can inform the development of novel approaches to adaptive robotics. Among these is the formation of the representation of space closely surrounding the body, the Peripersonal Space (PPS) , from multisensory sources like vision, hearing, touch and proprioception, which helps to facilitate human activities within their surroundings. Taking inspiration from the virtual safety margin formed by the PPS representation in humans, this thesis first constructs an equivalent model of the safety zone for each body part of the iCub humanoid robot. This PPS layer serves as a distributed collision predictor, which translates visually detected objects approaching a robot\u2019s body parts (e.g., arm, hand) into the probabilities of a collision between those objects and body parts. This leads to adaptive avoidance behaviors in the robot via an optimization-based reactive controller. Notably, this visual reactive control pipeline can also seamlessly incorporate tactile input to guarantee safety in both pre- and post-collision phases in physical Human-Robot Interaction (pHRI). Concurrently, the controller is also able to take into account multiple targets (of manipulation reaching tasks) generated by a multiple Cartesian point planner. All components, namely the PPS, the multi-target motion planner (for manipulation reaching tasks), the reaching-with-avoidance controller and the humancentred visual perception, are combined harmoniously to form a hybrid control framework designed to provide safety for robots\u2019 interactions in a cluttered environment shared with human partners. Later, motivated by the development of manipulation skills in infants, in which the multisensory integration is thought to play an important role, a learning framework is proposed to allow a robot to learn the processes of forming sensory representations, namely visuomotor and visuotactile, from their own motor activities in the environment. Both multisensory integration models are constructed with Deep Neural Networks (DNNs) in such a way that their outputs are represented in motor space to facilitate the robot\u2019s subsequent actions
    corecore