32,184 research outputs found

    EmoDiarize: Speaker Diarization and Emotion Identification from Speech Signals using Convolutional Neural Networks

    Full text link
    In the era of advanced artificial intelligence and human-computer interaction, identifying emotions in spoken language is paramount. This research explores the integration of deep learning techniques in speech emotion recognition, offering a comprehensive solution to the challenges associated with speaker diarization and emotion identification. It introduces a framework that combines a pre-existing speaker diarization pipeline and an emotion identification model built on a Convolutional Neural Network (CNN) to achieve higher precision. The proposed model was trained on data from five speech emotion datasets, namely, RAVDESS, CREMA-D, SAVEE, TESS, and Movie Clips, out of which the latter is a speech emotion dataset created specifically for this research. The features extracted from each sample include Mel Frequency Cepstral Coefficients (MFCC), Zero Crossing Rate (ZCR), Root Mean Square (RMS), and various data augmentation algorithms like pitch, noise, stretch, and shift. This feature extraction approach aims to enhance prediction accuracy while reducing computational complexity. The proposed model yields an unweighted accuracy of 63%, demonstrating remarkable efficiency in accurately identifying emotional states within speech signals

    Emotion sensing from head motion capture

    Get PDF
    Computational analysis of emotion from verbal and non-verbal behavioral cues is critical for human-centric intelligent systems. Among the non-verbal cues, head motion has received relatively less attention, although its importance has been noted in several research. We propose a new approach for emotion recognition using head motion captured using Motion Capture (MoCap). Our approach is motivated by the well known kinesics-phonetic analogy, which advocates that, analogous to human speech being composed of phonemes, head motion is composed of kinemes i.e., elementary motion units. We discover a set of kinemes from head motion in an unsupervised manner by projecting them onto a learned basis domain and subsequently clustering them. This transforms any head motion to a sequence of kinemes. Next, we learn the temporal latent structures within the kineme sequence pertaining to each emotion. For this purpose, we explore two separate approaches – one using Hidden Markov Model and another using artificial neural network. This class-specific, kineme-based representation of head motion is used to perform emotion recognition on the popular IEMOCAP database. We achieve high recognition accuracy (61.8% for three class) for various emotion recognition tasks using head motion alone. This work adds to our understanding of head motion dynamics, and has applications in emotion analysis and head motion animation and synthesis

    Representation Analysis Methods to Model Context for Speech Technology

    Get PDF
    Speech technology has developed to levels equivalent with human parity through the use of deep neural networks. However, it is unclear how the learned dependencies within these networks can be attributed to metrics such as recognition performance. This research focuses on strategies to interpret and exploit these learned context dependencies to improve speech recognition models. Context dependency analysis had not yet been explored for speech recognition networks. In order to highlight and observe dependent representations within speech recognition models, a novel analysis framework is proposed. This analysis framework uses statistical correlation indexes to compute the coefficiency between neural representations. By comparing the coefficiency of neural representations between models using different approaches, it is possible to observe specific context dependencies within network layers. By providing insights on context dependencies it is then possible to adapt modelling approaches to become more computationally efficient and improve recognition performance. Here the performance of End-to-End speech recognition models are analysed, providing insights on the acoustic and language modelling context dependencies. The modelling approach for a speaker recognition task is adapted to exploit acoustic context dependencies and reach comparable performance with the state-of-the-art methods, reaching 2.89% equal error rate using the Voxceleb1 training and test sets with 50% of the parameters. Furthermore, empirical analysis of the role of acoustic context for speech emotion recognition modelling revealed that emotion cues are presented as a distributed event. These analyses and results for speech recognition applications aim to provide objective direction for future development of automatic speech recognition systems

    Hi,KIA: A Speech Emotion Recognition Dataset for Wake-Up Words

    Full text link
    Wake-up words (WUW) is a short sentence used to activate a speech recognition system to receive the user's speech input. WUW utterances include not only the lexical information for waking up the system but also non-lexical information such as speaker identity or emotion. In particular, recognizing the user's emotional state may elaborate the voice communication. However, there is few dataset where the emotional state of the WUW utterances is labeled. In this paper, we introduce Hi, KIA, a new WUW dataset which consists of 488 Korean accent emotional utterances collected from four male and four female speakers and each of utterances is labeled with four emotional states including anger, happy, sad, or neutral. We present the step-by-step procedure to build the dataset, covering scenario selection, post-processing, and human validation for label agreement. Also, we provide two classification models for WUW speech emotion recognition using the dataset. One is based on traditional hand-craft features and the other is a transfer-learning approach using a pre-trained neural network. These classification models could be used as benchmarks in further research.Comment: Asia Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA), 202

    Real-time speech emotion analysis for smart home assistants

    Get PDF
    Artificial Intelligence (AI) based Speech Emotion Recognition (SER) has been widely used in the consumer field for control of smart home personal assistants, with many such devices on the market. However, with the increase in computational power, connectivity and the need to enable people to live in the home for longer though the use of technology, then smart home assistants that could detect human emotion will improve the communication between a user and the assistant enabling the assistant of offer more productive feedback. Thus, the aim of this work is to analyze emotional states in speech and propose a suitable method considering performance verses complexity for deployment in Consumer Electronics home products, and to present a practical live demonstration of the research. In this paper, a comprehensive approach has been introduced for the human speech-based emotion analysis. The 1-D convolutional neural network (CNN) has been implemented to learn and classify the emotions associated with human speech. The paper has been implemented on the standard datasets (emotion classification) Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS) and Toronto Emotional Speech Set database (TESS) (Young and Old). The proposed approach gives 90.48%, 95.79% and94.47% classification accuracies in the aforementioned datasets. We conclude that the 1-D CNN classification models used in speaker-independent experiments are highly effective in the automatic prediction of emotion and are ideal for deployment in smart home assistants to detect emotion

    Unsupervised Representations Improve Supervised Learning in Speech Emotion Recognition

    Full text link
    Speech Emotion Recognition (SER) plays a pivotal role in enhancing human-computer interaction by enabling a deeper understanding of emotional states across a wide range of applications, contributing to more empathetic and effective communication. This study proposes an innovative approach that integrates self-supervised feature extraction with supervised classification for emotion recognition from small audio segments. In the preprocessing step, to eliminate the need of crafting audio features, we employed a self-supervised feature extractor, based on the Wav2Vec model, to capture acoustic features from audio data. Then, the output featuremaps of the preprocessing step are fed to a custom designed Convolutional Neural Network (CNN)-based model to perform emotion classification. Utilizing the ShEMO dataset as our testing ground, the proposed method surpasses two baseline methods, i.e. support vector machine classifier and transfer learning of a pretrained CNN. comparing the propose method to the state-of-the-art methods in SER task indicates the superiority of the proposed method. Our findings underscore the pivotal role of deep unsupervised feature learning in elevating the landscape of SER, offering enhanced emotional comprehension in the realm of human-computer interactions
    • …
    corecore