407 research outputs found

    The Role of Non-Linearities in Visual Perception studied with a Computational Model of the Vertebrate Retina

    Get PDF
    Processing of visual stimuli in the vertebrate retina is complex and diverse. The retinal output to the higher centres of the nervous system, mediated by ganglion cells, consists of several different channels. Neurons in these channels can have very distinct response properties, which originate in different retinal pathways. In this work, the retinal origins and possible functional implications of the segregation of visual pathways will be investigated with a detailed, biologically realistic computational model of the retina. This investigation will focus on the two main retino-cortical pathways in the mammalian retina, the parvocellular and magnocellular systems, which are crucial for conscious visual perception. These pathways differ in two important aspects. The parvocellular system has a high spatial, but low temporal resolution. Conversely, the magnocellular system has a high temporal fidelity, spatial sampling however is less dense than for parvocellular cells. Additionally, the responses of magnocellular ganglion cells can show pronounced nonlinearities, while the parvocellular system is essentially linear. The origin of magnocellular nonlinearities is unknown and will be investigated in the first part of this work. As their main source, the results suggest specific properties of the photoreceptor response and a specialised amacrine cell circuit in the inner retina. The results further show that their effect combines in a multiplicative way. The model is then used to examine the influence of nonlinearities on the responses of ganglion cells in the presence of involuntary fixational eye movements. Two different stimulus conditions will be considered: visual hyperacuity and motion induced illusions. In both cases, it is possible to directly compare properties of the ganglion cell population response with psychophysical data, which allows for an analysis of the influence of different components of the retinal circuitry. The simulation results suggest an important role for nonlinearities in the magnocellular stream for visual perception in both cases. First, it will be shown how nonlinearities, triggered by fixational eye movements, can strongly enhance the spatial precision of magnocellular ganglion cells. As a result, their performance in a hyperacuity task can be equal to or even surpass that of the parvocellular system. Second, the simulations imply that the origin of some of the illusory percepts elicited by fixational eye movements could be traced back to the nonlinear properties of magnocellular ganglion cells. As these activity patterns strongly differ from those in the parvocellular system, it appears that the magnocellular system can strongly dominate visual perception in certain conditions. Taken together, the results of this theoretical study suggest that retinal nonlinearities may be important for and strongly influence visual perception. The model makes several experimentally verifiable predictions to further test and quantify these findings. Furthermore, models investigating higher visual processing stages may benefit from this work, which could provide the basis to produce realistic afferent input

    A Neural Computation for Visual Acuity in the Presence of Eye Movements

    Get PDF
    Humans can distinguish visual stimuli that differ by features the size of only a few photoreceptors. This is possible despite the incessant image motion due to fixational eye movements, which can be many times larger than the features to be distinguished. To perform well, the brain must identify the retinal firing patterns induced by the stimulus while discounting similar patterns caused by spontaneous retinal activity. This is a challenge since the trajectory of the eye movements, and consequently, the stimulus position, are unknown. We derive a decision rule for using retinal spike trains to discriminate between two stimuli, given that their retinal image moves with an unknown random walk trajectory. This algorithm dynamically estimates the probability of the stimulus at different retinal locations, and uses this to modulate the influence of retinal spikes acquired later. Applied to a simple orientation-discrimination task, the algorithm performance is consistent with human acuity, whereas naive strategies that neglect eye movements perform much worse. We then show how a simple, biologically plausible neural network could implement this algorithm using a local, activity-dependent gain and lateral interactions approximately matched to the statistics of eye movements. Finally, we discuss evidence that such a network could be operating in the primary visual cortex

    Saccadic latency in amblyopia.

    Get PDF
    We measured saccadic latencies in a large sample (total n = 459) of individuals with amblyopia or risk factors for amblyopia, e.g., strabismus or anisometropia, and normal control subjects. We presented an easily visible target randomly to the left or right, 3.5° from fixation. The interocular difference in saccadic latency is highly correlated with the interocular difference in LogMAR (Snellen) acuity-as the acuity difference increases, so does the latency difference. Strabismic and strabismic-anisometropic amblyopes have, on average, a larger difference between their eyes in LogMAR acuity than anisometropic amblyopes and thus their interocular latency difference is, on average, significantly larger than anisometropic amblyopes. Despite its relation to LogMAR acuity, the longer latency in strabismic amblyopes cannot be attributed either to poor resolution or to reduced contrast sensitivity, because their interocular differences in grating acuity and in contrast sensitivity are roughly the same as for anisometropic amblyopes. The correlation between LogMAR acuity and saccadic latency arises because of the confluence of two separable effects in the strabismic amblyopic eye-poor letter recognition impairs LogMAR acuity while an intrinsic sluggishness delays reaction time. We speculate that the frequent microsaccades and the accompanying attentional shifts, made while strabismic amblyopes struggle to maintain fixation with their amblyopic eyes, result in all types of reactions being irreducibly delayed

    Fixational Saccades and Their Relation to Fixation Instability in Strabismic Monkeys

    Get PDF
    Purpose: To evaluate the contribution of fixational saccades toward fixation instability in strabismic monkeys. Methods: Binocular eye movements were measured as six experimental monkeys (five strabismic monkeys and one monkey with downbeat nystagmus) and one normal monkey fixated targets of two shapes (Optotype, Disk) and two sizes (0.5°, 2°) during monocular and binocular viewing. Fixational saccades were detected using an unsupervised clustering algorithm. Results: When compared with the normal monkey, amplitude and frequency of fixational saccades in both the viewing and nonviewing eye were greater in 3 of 5 strabismic monkeys (1-way ANOVA on ranks P < 0.001; median amplitude in the normal monkey viewing eye: 0.33°; experimental animals: median amplitude range 0.20–0.82°; median frequency in the normal monkey: 1.35/s; experimental animals: median frequency range 1.3–3.7/s). Increase in frequency of fixational saccades was largely due to quick phases of ongoing nystagmus. Fixational saccade amplitude was increased significantly (3-way ANOVA; P < 0.001) but by small magnitude depending on target shape and size (mean difference between disk and optotype targets = 0.02°; mean difference between 2° and 0.5° targets = 0.1°). Relationship between saccade amplitude and the Bivariate Contour Ellipse Area (BCEA) was nonlinear, showing saturation of saccade amplitude. Fixation instability in depth was significantly greater in strabismic monkeys (vergence BCEA: 0.63 deg2–2.15 deg2) compared with the normal animal (vergence BCEA: 0.15 deg2; P < 0.001). Conclusions: Increased fixational instability in strabismic monkeys is only partially due to increased amplitude and more frequent fixational saccades. Target parameter effects on fixational saccades are similar to previous findings of target effects on BCEA

    Oculomotor deficits in children adopted from Eastern Europe

    Get PDF
    Aim: We aim to assess oculomotor behaviour in children adopted from Eastern Europe, who are at high risk of maternal alcohol consumption. Methods: This cross‐sectional study included 29 adoptees and 29 age‐matched controls. All of them underwent a complete ophthalmological examination. Oculomotor control, including fixation and saccadic performance, was assessed using a DIVE device, with eye tracking technology. Anthropometric and facial measurements were obtained from all the adopted children, to identify features of foetal alcohol spectrum disorders (FASD). Fixational and saccadic outcomes were compared between groups, and the effect of adoption and FASD features quantified. Results: Oculomotor performance was poorer in adopted children. They presented shorter (0.53 vs 1.43 milliseconds in the long task and 0.43 vs 0.82 in the short task) and more unstable fixations (with a bivariate contour ellipse area of 27.9 vs 11.6 degree2 during the long task and 6.9 vs 1.3 degree2 during the short task) and slower saccadic reactions (278 vs 197 milliseconds). Children with sentinel finding for FASD showed the worst oculomotor outcomes. Conclusion: Children adopted from Eastern Europe present oculomotor deficits, affecting both fixation and saccadic skills. We highlight prenatal exposure to alcohol as the main cause for these deficits

    Influence of Target Parameters on Fixation Stability in Normal and Strabismic Monkeys

    Get PDF
    Purpose: The purpose of this study was to assess the effect of fixation target parameters on fixation instability in strabismic monkeys. Methods: One normal and three exotropic monkeys were presented with four differently shaped fixation targets, with three diameters, during monocular or binocular viewing. Fixation targets were white on a black background or vice versa. Binocular eye movements were recorded using the magnetic search coil technique and fixation stability quantified by calculating the bivariate contour ellipse area (BCEA). Results: Fixation instability was greater in all the strabismic monkeys compared with the normal monkey. During monocular viewing, strabismic monkeys showed significantly greater instability in the covered eye compared to the fixating eye. Multifactorial ANOVA suggested statistically significant target parameter influences, although effect sizes were small. Thus, a disk-shaped target resulted in greater instability than other target shapes in the viewing eyes of the normal monkey and two of three strabismic monkeys. A similar target-shape effect was also observed in the covered eye. Least instability was elicited with a 0.5° target in the normal monkey and a 1.0° target in the strabismic monkeys, both in the viewing and the covered eye. Target/background polarity effects were idiosyncratic. In strabismic monkeys, stability of the fixating eye during binocular viewing was not different from the stability of the same eye during monocular viewing. Conclusions: Abnormal drifts and nystagmus contribute to increased fixation instability in strabismic monkeys. Target parameters (shape and size) that influence fixation stability in a normal animal also affected fixation stability in our sample of strabismic monkeys

    Subcortical Control of Visual Fixation

    Get PDF

    Effects of visual blur on microsaccades during visual exploration

    Get PDF
    Microsaccades shift the image on the fovea and counteract visual fading. They also serve as an optimal sampling strategy while viewing complex visual scenes. Microsaccade production relies on the amount of retinal error or acuity demand of a visual task. The goal of this study was to assess the effects of blur induced by uncorrected refractive error on visual search. Eye movements were recorded in fourteen healthy subjects with uncorrected and corrected refractive error while they performed a) visual fixation b) blank-scene viewing c) visual search (spot the difference) tasks. Microsaccades, saccades, correctly identified differences and reaction times were analyzed. The frequency of microsaccades and correctly identified differences were lower in the uncorrected refractive error during visual search. No similar change in microsaccades was seen during blank-scene viewing and gaze holding tasks. These findings suggest that visual blur, hence the precision of an image on the fovea, has an important role in calibrating the amplitude of microsaccades during visual scanning

    Visual functions of microsaccade transients

    Full text link
    Microsaccades, the microscopic and fast gaze relocations occurring while we attempt to maintain steady fixation, cause both spatial and temporal changes in the input to the retina. Despite much progress in understanding the spatial functions of these small eye movements during the last decade, it remains unclear whether the temporal modulations resulting from microsaccades are also beneficial for vision. This dissertation describes three studies aimed at providing answers to the following fundamental questions: (1) What are the space-time characteristics of the input to the retina at the time of saccades and microsaccades? Spectral analyses of the retinal input during free-viewing of natural images show that luminance modulations resulting from saccades and microsaccades redistribute the power of an otherwise stationary stimulus in a way that contributes more temporal power than ocular drift within a range of low spatial frequencies. These results suggest a specific role for saccadic eye movements in the encoding of low spatial frequencies. (2) We measured how microsaccade transients affect human contrast sensitivity at different spatial frequencies. We showed that contrast thresholds remain highly similar in the presence and absence of microsaccades below 30'. However, an improvement in sensitivity to low spatial frequency stimuli was found for saccades with amplitudes larger than 30'. Furthermore, saccades of all amplitudes, including microsaccades, were strongly suppressed during exposure to the stimuli. (3) What are the dynamics of visual sensitivity around the time of occurrence of microsaccades? We show that sensitivity is reduced at the time of microsaccades and small saccades, similar to what previously reported for saccades. Moreover, sensitivity is not homogeneous within the fovea but decreases with increasing eccentricity. These results clarify the importance of microsaccades to vision. They show that the luminance modulations resulting from both microsaccades and saccades play an important role in representation of visual information and affect our perception in a systematic way.2018-12-06T00:00:00
    corecore