6,835 research outputs found

    In silico case studies of compliant robots: AMARSI deliverable 3.3

    Get PDF
    In the deliverable 3.2 we presented how the morphological computing ap- proach can significantly facilitate the control strategy in several scenarios, e.g. quadruped locomotion, bipedal locomotion and reaching. In particular, the Kitty experimental platform is an example of the use of morphological computation to allow quadruped locomotion. In this deliverable we continue with the simulation studies on the application of the different morphological computation strategies to control a robotic system

    Passive Motion Paradigm: An Alternative to Optimal Control

    Get PDF
    In the last years, optimal control theory (OCT) has emerged as the leading approach for investigating neural control of movement and motor cognition for two complementary research lines: behavioral neuroscience and humanoid robotics. In both cases, there are general problems that need to be addressed, such as the “degrees of freedom (DoFs) problem,” the common core of production, observation, reasoning, and learning of “actions.” OCT, directly derived from engineering design techniques of control systems quantifies task goals as “cost functions” and uses the sophisticated formal tools of optimal control to obtain desired behavior (and predictions). We propose an alternative “softer” approach passive motion paradigm (PMP) that we believe is closer to the biomechanics and cybernetics of action. The basic idea is that actions (overt as well as covert) are the consequences of an internal simulation process that “animates” the body schema with the attractor dynamics of force fields induced by the goal and task-specific constraints. This internal simulation offers the brain a way to dynamically link motor redundancy with task-oriented constraints “at runtime,” hence solving the “DoFs problem” without explicit kinematic inversion and cost function computation. We argue that the function of such computational machinery is not only restricted to shaping motor output during action execution but also to provide the self with information on the feasibility, consequence, understanding and meaning of “potential actions.” In this sense, taking into account recent developments in neuroscience (motor imagery, simulation theory of covert actions, mirror neuron system) and in embodied robotics, PMP offers a novel framework for understanding motor cognition that goes beyond the engineering control paradigm provided by OCT. Therefore, the paper is at the same time a review of the PMP rationale, as a computational theory, and a perspective presentation of how to develop it for designing better cognitive architectures

    Cortical Models for Movement Control

    Full text link
    Defense Advanced Research Projects Agency and Office of Naval Research (N0014-95-l-0409)

    Social Cognition for Human-Robot Symbiosis—Challenges and Building Blocks

    Get PDF
    The next generation of robot companions or robot working partners will need to satisfy social requirements somehow similar to the famous laws of robotics envisaged by Isaac Asimov time ago (Asimov, 1942). The necessary technology has almost reached the required level, including sensors and actuators, but the cognitive organization is still in its infancy and is only partially supported by the current understanding of brain cognitive processes. The brain of symbiotic robots will certainly not be a “positronic” replica of the human brain: probably, the greatest part of it will be a set of interacting computational processes running in the cloud. In this article, we review the challenges that must be met in the design of a set of interacting computational processes as building blocks of a cognitive architecture that may give symbiotic capabilities to collaborative robots of the next decades: (1) an animated body-schema; (2) an imitation machinery; (3) a motor intentions machinery; (4) a set of physical interaction mechanisms; and (5) a shared memory system for incremental symbiotic development. We would like to stress that our approach is totally un-hierarchical: the five building blocks of the shared cognitive architecture are fully bi-directionally connected. For example, imitation and intentional processes require the “services” of the animated body schema which, on the other hand, can run its simulations if appropriately prompted by imitation and/or intention, with or without physical interaction. Successful experiences can leave a trace in the shared memory system and chunks of memory fragment may compete to participate to novel cooperative actions. And so on and so forth. At the heart of the system is lifelong training and learning but, different from the conventional learning paradigms in neural networks, where learning is somehow passively imposed by an external agent, in symbiotic robots there is an element of free choice of what is worth learning, driven by the interaction between the robot and the human partner. The proposed set of building blocks is certainly a rough approximation of what is needed by symbiotic robots but we believe it is a useful starting point for building a computational framework

    Bio­-inspired approaches to the control and modelling of an anthropomimetic robot

    Get PDF
    Introducing robots into human environments requires them to handle settings designed specifically for human size and morphology, however, large, conventional humanoid robots with stiff, high powered joint actuators pose a significant danger to humans. By contrast, “anthropomimetic” robots mimic both human morphology and internal structure; skeleton, muscles, compliance and high redundancy. Although far safer, their resultant compliant structure presents a formidable challenge to conventional control. Here we review, and seek to address, characteristic control issues of this class of robot, whilst exploiting their biomimetic nature by drawing upon biological motor control research. We derive a novel learning controller for discovering effective reaching actions created through sustained activation of one or more muscle synergies, an approach which draws upon strong, recent evidence from animal and humans studies, but is almost unexplored to date in musculoskeletal robot literature. Since the best synergies for a given robot will be unknown, we derive a deliberately simple reinforcement learning approach intended to allow their emergence, in particular those patterns which aid linearization of control. We also draw upon optimal control theories to encourage the emergence of smoother movement by incorporating signal dependent noise and trial repetition. In addition, we argue the utility of developing a detailed dynamic model of a complete robot and present a stable, physics-­‐‑based model, of the anthropomimetic ECCERobot, running in real time with 55 muscles and 88 degrees of freedom. Using the model, we find that effective reaching actions can be learned which employ only two sequential motor co-­‐‑activation patterns, each controlled by just a single common driving signal. Factor analysis shows the emergent muscle co-­‐‑activations can be reconstructed to significant accuracy using weighted combinations of only 13 common fragments, labelled “candidate synergies”. Using these synergies as drivable units the same controller learns the same task both faster and better, however, other reaching tasks perform less well, proportional to dissimilarity; we therefore propose that modifications enabling emergence of a more generic set of synergies are required. Finally, we propose a continuous controller for the robot, based on model predictive control, incorporating our model as a predictive component for state estimation, delay-­‐‑ compensation and planning, including merging of the robot and sensed environment into a single model. We test the delay compensation mechanism by controlling a second copy of the model acting as a proxy for the real robot, finding that performance is significantly improved if a precise degree of compensation is applied and show how rapidly an un-­‐‑compensated controller fails as the model accuracy degrades

    Neural Representations for Sensory-Motor Control, II: Learning a Head-Centered Visuomotor Representation of 3-D Target Position

    Full text link
    A neural network model is described for how an invariant head-centered representation of 3-D target position can be autonomously learned by the brain in real time. Once learned, such a target representation may be used to control both eye and limb movements. The target representation is derived from the positions of both eyes in the head, and the locations which the target activates on the retinas of both eyes. A Vector Associative Map, or YAM, learns the many-to-one transformation from multiple combinations of eye-and-retinal position to invariant 3-D target position. Eye position is derived from outflow movement signals to the eye muscles. Two successive stages of opponent processing convert these corollary discharges into a. head-centered representation that closely approximates the azimuth, elevation, and vergence of the eyes' gaze position with respect to a cyclopean origin located between the eyes. YAM learning combines this cyclopean representation of present gaze position with binocular retinal information about target position into an invariant representation of 3-D target position with respect to the head. YAM learning can use a teaching vector that is externally derived from the positions of the eyes when they foveate the target. A YAM can also autonomously discover and learn the invariant representation, without an explicit teacher, by generating internal error signals from environmental fluctuations in which these invariant properties are implicit. YAM error signals are computed by Difference Vectors, or DVs, that are zeroed by the YAM learning process. YAMs may be organized into YAM Cascades for learning and performing both sensory-to-spatial maps and spatial-to-motor maps. These multiple uses clarify why DV-type properties are computed by cells in the parietal, frontal, and motor cortices of many mammals. YAMs are modulated by gating signals that express different aspects of the will-to-act. These signals transform a single invariant representation into movements of different speed (GO signal) and size (GRO signal), and thereby enable YAM controllers to match a planned action sequence to variable environmental conditions.National Science Foundation (IRI-87-16960, IRI-90-24877); Office of Naval Research (N00014-92-J-1309
    • 

    corecore