3,227 research outputs found

    GLEAKE: Global and Local Embedding Automatic Keyphrase Extraction

    Full text link
    Automated methods for granular categorization of large corpora of text documents have become increasingly more important with the rate scientific, news, medical, and web documents are growing in the last few years. Automatic keyphrase extraction (AKE) aims to automatically detect a small set of single or multi-words from within a single textual document that captures the main topics of the document. AKE plays an important role in various NLP and information retrieval tasks such as document summarization and categorization, full-text indexing, and article recommendation. Due to the lack of sufficient human-labeled data in different textual contents, supervised learning approaches are not ideal for automatic detection of keyphrases from the content of textual bodies. With the state-of-the-art advances in text embedding techniques, NLP researchers have focused on developing unsupervised methods to obtain meaningful insights from raw datasets. In this work, we introduce Global and Local Embedding Automatic Keyphrase Extractor (GLEAKE) for the task of AKE. GLEAKE utilizes single and multi-word embedding techniques to explore the syntactic and semantic aspects of the candidate phrases and then combines them into a series of embedding-based graphs. Moreover, GLEAKE applies network analysis techniques on each embedding-based graph to refine the most significant phrases as a final set of keyphrases. We demonstrate the high performance of GLEAKE by evaluating its results on five standard AKE datasets from different domains and writing styles and by showing its superiority with regards to other state-of-the-art methods

    Learning Symmetric Collaborative Dialogue Agents with Dynamic Knowledge Graph Embeddings

    Full text link
    We study a symmetric collaborative dialogue setting in which two agents, each with private knowledge, must strategically communicate to achieve a common goal. The open-ended dialogue state in this setting poses new challenges for existing dialogue systems. We collected a dataset of 11K human-human dialogues, which exhibits interesting lexical, semantic, and strategic elements. To model both structured knowledge and unstructured language, we propose a neural model with dynamic knowledge graph embeddings that evolve as the dialogue progresses. Automatic and human evaluations show that our model is both more effective at achieving the goal and more human-like than baseline neural and rule-based models.Comment: ACL 201

    Cross-Sentence N-ary Relation Extraction with Graph LSTMs

    Full text link
    Past work in relation extraction has focused on binary relations in single sentences. Recent NLP inroads in high-value domains have sparked interest in the more general setting of extracting n-ary relations that span multiple sentences. In this paper, we explore a general relation extraction framework based on graph long short-term memory networks (graph LSTMs) that can be easily extended to cross-sentence n-ary relation extraction. The graph formulation provides a unified way of exploring different LSTM approaches and incorporating various intra-sentential and inter-sentential dependencies, such as sequential, syntactic, and discourse relations. A robust contextual representation is learned for the entities, which serves as input to the relation classifier. This simplifies handling of relations with arbitrary arity, and enables multi-task learning with related relations. We evaluate this framework in two important precision medicine settings, demonstrating its effectiveness with both conventional supervised learning and distant supervision. Cross-sentence extraction produced larger knowledge bases. and multi-task learning significantly improved extraction accuracy. A thorough analysis of various LSTM approaches yielded useful insight the impact of linguistic analysis on extraction accuracy.Comment: Conditional accepted by TACL in December 2016; published in April 2017; presented at ACL in August 201

    An end-to-end Neural Network Framework for Text Clustering

    Full text link
    The unsupervised text clustering is one of the major tasks in natural language processing (NLP) and remains a difficult and complex problem. Conventional \mbox{methods} generally treat this task using separated steps, including text representation learning and clustering the representations. As an improvement, neural methods have also been introduced for continuous representation learning to address the sparsity problem. However, the multi-step process still deviates from the unified optimization target. Especially the second step of cluster is generally performed with conventional methods such as k-Means. We propose a pure neural framework for text clustering in an end-to-end manner. It jointly learns the text representation and the clustering model. Our model works well when the context can be obtained, which is nearly always the case in the field of NLP. We have our method \mbox{evaluated} on two widely used benchmarks: IMDB movie reviews for sentiment classification and 2020-Newsgroup for topic categorization. Despite its simplicity, experiments show the model outperforms previous clustering methods by a large margin. Furthermore, the model is also verified on English wiki dataset as a large corpus

    Investigating the Working of Text Classifiers

    Full text link
    Text classification is one of the most widely studied tasks in natural language processing. Motivated by the principle of compositionality, large multilayer neural network models have been employed for this task in an attempt to effectively utilize the constituent expressions. Almost all of the reported work train large networks using discriminative approaches, which come with a caveat of no proper capacity control, as they tend to latch on to any signal that may not generalize. Using various recent state-of-the-art approaches for text classification, we explore whether these models actually learn to compose the meaning of the sentences or still just focus on some keywords or lexicons for classifying the document. To test our hypothesis, we carefully construct datasets where the training and test splits have no direct overlap of such lexicons, but overall language structure would be similar. We study various text classifiers and observe that there is a big performance drop on these datasets. Finally, we show that even simple models with our proposed regularization techniques, which disincentivize focusing on key lexicons, can substantially improve classification accuracy.Comment: Proceedings of COLING 2018, the 27th International Conference on Computational Linguistics: Technical Papers (COLING 2018), NIPS 2017 Workshop on Deep Learning: Bridging Theory and Practic

    Deep Multitask Learning for Semantic Dependency Parsing

    Full text link
    We present a deep neural architecture that parses sentences into three semantic dependency graph formalisms. By using efficient, nearly arc-factored inference and a bidirectional-LSTM composed with a multi-layer perceptron, our base system is able to significantly improve the state of the art for semantic dependency parsing, without using hand-engineered features or syntax. We then explore two multitask learning approaches---one that shares parameters across formalisms, and one that uses higher-order structures to predict the graphs jointly. We find that both approaches improve performance across formalisms on average, achieving a new state of the art. Our code is open-source and available at https://github.com/Noahs-ARK/NeurboParser.Comment: Proceedings of ACL 201

    More Data, More Relations, More Context and More Openness: A Review and Outlook for Relation Extraction

    Full text link
    Relational facts are an important component of human knowledge, which are hidden in vast amounts of text. In order to extract these facts from text, people have been working on relation extraction (RE) for years. From early pattern matching to current neural networks, existing RE methods have achieved significant progress. Yet with explosion of Web text and emergence of new relations, human knowledge is increasing drastically, and we thus require "more" from RE: a more powerful RE system that can robustly utilize more data, efficiently learn more relations, easily handle more complicated context, and flexibly generalize to more open domains. In this paper, we look back at existing RE methods, analyze key challenges we are facing nowadays, and show promising directions towards more powerful RE. We hope our view can advance this field and inspire more efforts in the community

    Modelling Context with User Embeddings for Sarcasm Detection in Social Media

    Full text link
    We introduce a deep neural network for automated sarcasm detection. Recent work has emphasized the need for models to capitalize on contextual features, beyond lexical and syntactic cues present in utterances. For example, different speakers will tend to employ sarcasm regarding different subjects and, thus, sarcasm detection models ought to encode such speaker information. Current methods have achieved this by way of laborious feature engineering. By contrast, we propose to automatically learn and then exploit user embeddings, to be used in concert with lexical signals to recognize sarcasm. Our approach does not require elaborate feature engineering (and concomitant data scraping); fitting user embeddings requires only the text from their previous posts. The experimental results show that our model outperforms a state-of-the-art approach leveraging an extensive set of carefully crafted features.Comment: published as a conference paper at CONLL 201

    Out of the Box: Reasoning with Graph Convolution Nets for Factual Visual Question Answering

    Full text link
    Accurately answering a question about a given image requires combining observations with general knowledge. While this is effortless for humans, reasoning with general knowledge remains an algorithmic challenge. To advance research in this direction a novel `fact-based' visual question answering (FVQA) task has been introduced recently along with a large set of curated facts which link two entities, i.e., two possible answers, via a relation. Given a question-image pair, deep network techniques have been employed to successively reduce the large set of facts until one of the two entities of the final remaining fact is predicted as the answer. We observe that a successive process which considers one fact at a time to form a local decision is sub-optimal. Instead, we develop an entity graph and use a graph convolutional network to `reason' about the correct answer by jointly considering all entities. We show on the challenging FVQA dataset that this leads to an improvement in accuracy of around 7% compared to the state of the art.Comment: Accepted to NIPS 201

    Generating Logical Forms from Graph Representations of Text and Entities

    Full text link
    Structured information about entities is critical for many semantic parsing tasks. We present an approach that uses a Graph Neural Network (GNN) architecture to incorporate information about relevant entities and their relations during parsing. Combined with a decoder copy mechanism, this approach provides a conceptually simple mechanism to generate logical forms with entities. We demonstrate that this approach is competitive with the state-of-the-art across several tasks without pre-training, and outperforms existing approaches when combined with BERT pre-training.Comment: ACL 201
    • …
    corecore