3,154 research outputs found

    On the Feasibility of Social Network-based Pollution Sensing in ITSs

    Full text link
    Intense vehicular traffic is recognized as a global societal problem, with a multifaceted influence on the quality of life of a person. Intelligent Transportation Systems (ITS) can play an important role in combating such problem, decreasing pollution levels and, consequently, their negative effects. One of the goals of ITSs, in fact, is that of controlling traffic flows, measuring traffic states, providing vehicles with routes that globally pursue low pollution conditions. How such systems measure and enforce given traffic states has been at the center of multiple research efforts in the past few years. Although many different solutions have been proposed, very limited effort has been devoted to exploring the potential of social network analysis in such context. Social networks, in general, provide direct feedback from people and, as such, potentially very valuable information. A post that tells, for example, how a person feels about pollution at a given time in a given location, could be put to good use by an environment aware ITS aiming at minimizing contaminant emissions in residential areas. This work verifies the feasibility of using pollution related social network feeds into ITS operations. In particular, it concentrates on understanding how reliable such information is, producing an analysis that confronts over 1,500,000 posts and pollution data obtained from on-the- field sensors over a one-year span.Comment: 10 pages, 15 figures, Transaction Forma

    StreetlightSim: a simulation environment to evaluate networked and adaptive street lighting

    No full text
    Sustaining the operation of street lights incurs substantial financial and environmental cost. Consequently, adaptive lighting systems have been proposed incorporating ad-hoc networking, sensing, and data processing, in order to better manage the street lights and their energy demands. Evaluating the efficiency and effectiveness of these complex systems requires the modelling of vehicles, road networks, algorithms, and communication systems, yet tools are not available to permit this. This paper proposes StreetlightSim, a novel simulation environment combining OMNeT++ and SUMO tools to model both traffic patterns and adaptive networked street lights. StreetlightSim’s models are illustrated through the simulation of a simple example, and a more complex scenario is used to show the potential of the tool and the obtainable results. StreetlightSim has been made open-source, and hence is available to the community

    Crowd-sensing our Smart Cities: a Platform for Noise Monitoring and Acoustic Urban Planning

    Get PDF
    Environmental pollution and the corresponding control measurements put in place to tackle it play a significant role in determining the actual quality of life in modern cities. Amongst the several pollutant that have to be faced on a daily basis, urban noise represent one of the most widely known for its already ascertained health-related issues. However, no systematic noise management and control activities are performed in the majority of European cities due to a series of limiting factors (e.g., expensive monitoring equipment, few available technician, scarce awareness of the problem in city managers). The recent advances in the Smart City model, which is being progressively adopted in many cities, nowadays offer multiple possibilities to improve the effectiveness in this area. The Mobile Crowd Sensing paradigm allows collecting data streams from smartphone built-in sensors on large geographical scales at no cost and without involving expert data captors, provided that an adequate IT infrastructure has been implemented to manage properly the gathered measurements. In this paper, we present an improved version of a MCS-based platform, named City Soundscape, which allows exploiting any Android-based device as a portable acoustic monitoring station and that offers city managers an effective and straightforward tool for planning Noise Reduction Interventions (NRIs) within their cities. The platform also now offers a new logical microservices architecture

    Cooperative Coherent Multistatic Imaging and Phase Synchronization in Networked Sensing

    Full text link
    Coherent multistatic radio imaging represents a pivotal opportunity for forthcoming wireless networks, which involves distributed nodes cooperating to achieve accurate sensing resolution and robustness. This paper delves into cooperative coherent imaging for vehicular radar networks. Herein, multiple radar-equipped vehicles cooperate to improve collective sensing capabilities and address the fundamental issue of distinguishing weak targets in close proximity to strong ones, a critical challenge for vulnerable road users protection. We prove the significant benefits of cooperative coherent imaging in the considered automotive scenario in terms of both probability of correct detection, evaluated considering several system parameters, as well as resolution capabilities, showcased by a dedicated experimental campaign wherein the collaboration between two vehicles enables the detection of the legs of a pedestrian close to a parked car. Moreover, as \textit{coherent} processing of several sensors' data requires very tight accuracy on clock synchronization and sensor's positioning -- referred to as \textit{phase synchronization} -- (such that to predict sensor-target distances up to a fraction of the carrier wavelength), we present a general three-step cooperative multistatic phase synchronization procedure, detailing the required information exchange among vehicles in the specific automotive radar context and assessing its feasibility and performance by hybrid Cram\'er-Rao bound.Comment: 13 page

    Project54 vehicle telematics for remote diagnostics, fleet management and traffic monitoring

    Get PDF
    The Project54 system was developed to introduce advanced technologies into the operations of the New Hampshire Department of Safety and other law enforcement agencies. The application of computing, sensing and telecommunication technologies within the Project54 system enables advanced telematics services that can provide benefits to vehicle operators, fleet managers and the public. This thesis describes the implementation of remote diagnostics and fleet management services for the Project54 system and investigates the use of radar equipped police vehicles as traffic probes. Aftermarket diagnostic hardware has been integrated in the Project54 system and software applications have been developed to control the hardware and record diagnostic information. An electronic data entry form has been created for tracking vehicle operating expenses and a vehicle status reporting system is described. Additionally, a traffic congestion scoring method using information from traffic radar units is presented

    Mapping Dispersion of Urban Air Particulate Matter Over Kirkuk City Using Geographic Information System

    Get PDF
    Urban air pollution problem is a major concern in many large cities and becomes increasingly critical around the world. The effects of urban air pollution on public health are being felt worldwide. Pollutants can  destroy sensitive tissues (in people, animals and plants), impair respiratory functions, degrade building materials and deteriorate the aesthetic aspects of environment. Mapping of urban air pollution dispersion is very complex as it depends upon various  factors including weather conditions, urban structural features and their topographic. In this research , the relationship between in-suite urban air pollutants (particulates matters - PM and total suspend particulate-TSP) and some metrological factors (Temperature, Humidity and wind speed) has been investigated. Geographic Information System (GIS ) was utilized to map urban air pollution dispersion in Kirkuk city - Iraq. The rapid growth of Kirkuk city as the main petroleum city in Iraq  last years  has resulted in significant increase in environmental pollution. A correlation analysis was performed to establish between air pollutants and metrological parameters. GIS technique was used to investigate the spatial distribution of the pollutants and identification of the city area of high concentration of pollutants. The results shows that there is a weak linear correlation between metrological factors and most of air pollutants. PM10 only shows a significant correlation with temperature. Generally we can conclude that the impact of  metrological factors can be almost ignored. From GIS  distribution maps for  PM and TSP pollutants, the highest concentration pollutants located around oil industrial area and in the center of the city. Keywords Urban Air Pollution, Particulates Matters, Total Suspend Particulate, Geographic Information System (GIS ) , Correlation Analysis

    Is There Light at the Ends of the Tunnel? Wireless Sensor Networks for Adaptive Lighting in Road Tunnels

    Get PDF
    Existing deployments of wireless sensor networks (WSNs) are often conceived as stand-alone monitoring tools. In this paper, we report instead on a deployment where the WSN is a key component of a closed-loop control system for adaptive lighting in operational road tunnels. WSN nodes along the tunnel walls report light readings to a control station, which closes the loop by setting the intensity of lamps to match a legislated curve. The ability to match dynamically the lighting levels to the actual environmental conditions improves the tunnel safety and reduces its power consumption. The use of WSNs in a closed-loop system, combined with the real-world, harsh setting of operational road tunnels, induces tighter requirements on the quality and timeliness of sensed data, as well as on the reliability and lifetime of the network. In this work, we test to what extent mainstream WSN technology meets these challenges, using a dedicated design that however relies on wellestablished techniques. The paper describes the hw/sw architecture we devised by focusing on the WSN component, and analyzes its performance through experiments in a real, operational tunnel

    Internet of robotic things : converging sensing/actuating, hypoconnectivity, artificial intelligence and IoT Platforms

    Get PDF
    The Internet of Things (IoT) concept is evolving rapidly and influencing newdevelopments in various application domains, such as the Internet of MobileThings (IoMT), Autonomous Internet of Things (A-IoT), Autonomous Systemof Things (ASoT), Internet of Autonomous Things (IoAT), Internetof Things Clouds (IoT-C) and the Internet of Robotic Things (IoRT) etc.that are progressing/advancing by using IoT technology. The IoT influencerepresents new development and deployment challenges in different areassuch as seamless platform integration, context based cognitive network integration,new mobile sensor/actuator network paradigms, things identification(addressing, naming in IoT) and dynamic things discoverability and manyothers. The IoRT represents new convergence challenges and their need to be addressed, in one side the programmability and the communication ofmultiple heterogeneous mobile/autonomous/robotic things for cooperating,their coordination, configuration, exchange of information, security, safetyand protection. Developments in IoT heterogeneous parallel processing/communication and dynamic systems based on parallelism and concurrencyrequire new ideas for integrating the intelligent “devices”, collaborativerobots (COBOTS), into IoT applications. Dynamic maintainability, selfhealing,self-repair of resources, changing resource state, (re-) configurationand context based IoT systems for service implementation and integrationwith IoT network service composition are of paramount importance whennew “cognitive devices” are becoming active participants in IoT applications.This chapter aims to be an overview of the IoRT concept, technologies,architectures and applications and to provide a comprehensive coverage offuture challenges, developments and applications

    Design and implementation of geographically pollution Monitoring system

    Get PDF
    This In this paper, Wireless sensor nodes are described that consist a wireless zigbee technology use to communicate with the back end system. The main purpose of the wireless sensor network is to examine and check the air quality. Wireless sensor nodes are communicate with a system to relay their measurements in real-time. The system consists of sensor nodes that consist a number of sensors, a gateway use to provide a serial communication, and a back-end platform system through which sensing data can be stored in a database. The experimental results show that the proposed system provide air quality monitoring in real-time through the Wireless Zigbee technology. DOI: 10.17762/ijritcc2321-8169.150712
    • …
    corecore