1,148,292 research outputs found

    A network-state management service

    Get PDF
    Abstract-We present Statesman, a network-state management service that allows multiple network management applications to operate independently, while maintaining network-wide safety and performance invariants. Network state captures various aspects of the network such as which links are alive and how switches are forwarding traffic. Statesman uses three views of the network state. In observed state, it maintains an up-to-date view of the actual network state. Applications read this state and propose state changes based on their individual goals. Using a model of dependencies among state variables, Statesman merges these proposed states into a target state that is guaranteed to maintain the safety and performance invariants. It then updates the network to the target state. Statesman has been deployed in ten Microsoft Azure datacenters for several months, and three distinct applications have been built on it. We use the experience from this deployment to demonstrate how Statesman enables each application to meet its goals, while maintaining network-wide invariants

    Dynamic resource management in SDN-based virtualized networks

    Get PDF
    Network virtualization allows for an abstraction between user and physical resources by letting a given physical infrastructure to be shared by multiple service providers. However, network virtualization presents some challenges, such as, efficient resource management, fast provisioning and scalability. By separating a network's control logic from the underlying routers and switches, software defined networking (SDN) promises an unprecedented simplification in network programmability, management and innovation by service providers, and hence, its control model presents itself as a candidate solution to the challenges in network virtualization. In this paper, we use the SDN control plane to efficiently manage resources in virtualized networks by dynamically adjusting the virtual network (VN) to substrate network (SN) mappings based on network status. We extend an SDN controller to monitor the resource utilisation of VNs, as well as the average loading of SN links and switches, and use this information to proactively add or remove flow rules from the switches. Simulations show that, compared with three state-of-art approaches, our proposal improves the VN acceptance ratio by about 40% and reduces VN resource costs by over 10%

    Automated network component drain management

    Get PDF
    Network management requires quick and efficient draining of links and other network components during maintenance operations. This disclosure describes an automated network drain service that allows users to perform the task of draining of links and other network components while also providing network-wide visibility into the actions undertaken. The service includes a live topology service, a network removal tool, a resolution tool, a workflow execution service, a network state recalculation service, and a traffic monitoring service

    An illustrative recovery approach for stateful interaction failures of orchestrated processes

    Get PDF
    During a stateful interaction, a partner service may become unavailable because of a server crash or a temporary network failure. Once the failed service becomes available again, the interaction partners do not have any knowledge about each other’s state, possibly resulting in errors or deadlocks. This paper proposes an approach to the recovery of stateful interactions based on service interaction patterns and process transformations. Our recovery approach works without a central management node and without additional communication protocols. We also minimize the changes to the description of the service supported by the recovery-enabled process. Our approach allows one partner process to be modified in order to support failures in a way that interaction with the other (unchanged) processes is still possible

    Consistent SDNs through Network State Fuzzing

    Full text link
    The conventional wisdom is that a software-defined network (SDN) operates under the premise that the logically centralized control plane has an accurate representation of the actual data plane state. Unfortunately, bugs, misconfigurations, faults or attacks can introduce inconsistencies that undermine correct operation. Previous work in this area, however, lacks a holistic methodology to tackle this problem and thus, addresses only certain parts of the problem. Yet, the consistency of the overall system is only as good as its least consistent part. Motivated by an analogy of network consistency checking with program testing, we propose to add active probe-based network state fuzzing to our consistency check repertoire. Hereby, our system, PAZZ, combines production traffic with active probes to periodically test if the actual forwarding path and decision elements (on the data plane) correspond to the expected ones (on the control plane). Our insight is that active traffic covers the inconsistency cases beyond the ones identified by passive traffic. PAZZ prototype was built and evaluated on topologies of varying scale and complexity. Our results show that PAZZ requires minimal network resources to detect persistent data plane faults through fuzzing and localize them quickly while outperforming baseline approaches.Comment: Added three extra relevant references, the arXiv later was accepted in IEEE Transactions of Network and Service Management (TNSM), 2019 with the title "Towards Consistent SDNs: A Case for Network State Fuzzing

    Achieving Robust Self-Management for Large-Scale Distributed Applications

    Get PDF
    Autonomic managers are the main architectural building blocks for constructing self-management capabilities of computing systems and applications. One of the major challenges in developing self-managing applications is robustness of management elements which form autonomic managers. We believe that transparent handling of the effects of resource churn (joins/leaves/failures) on management should be an essential feature of a platform for self-managing large-scale dynamic distributed applications, because it facilitates the development of robust autonomic managers and hence improves robustness of self-managing applications. This feature can be achieved by providing a robust management element abstraction that hides churn from the programmer. In this paper, we present a generic approach to achieve robust services that is based on finite state machine replication with dynamic reconfiguration of replica sets. We contribute a decentralized algorithm that maintains the set of nodes hosting service replicas in the presence of churn. We use this approach to implement robust management elements as robust services that can operate despite of churn. Our proposed decentralized algorithm uses peer-to-peer replica placement schemes to automate replicated state machine migration in order to tolerate churn. Our algorithm exploits lookup and failure detection facilities of a structured overlay network for managing the set of active replicas. Using the proposed approach, we can achieve a long running and highly available service, without human intervention, in the presence of resource churn. In order to validate and evaluate our approach, we have implemented a prototype that includes the proposed algorithm
    • …
    corecore