7,168 research outputs found

    Development of scenarios for land cover, population density, impervious cover, and conservation in New Hampshire, 2010–2100

    Get PDF
    Future changes in ecosystem services will depend heavily on changes in land cover and land use, which, in turn, are shaped by human activities. Given the challenges of predicting long-term changes in human behaviors and activities, scenarios provide a framework for simulating the long-term consequences of land-cover change on ecosystem function. As input for process-based models of terrestrial and aquatic ecosystem function, we developed scenarios for land cover, population density, and impervious cover for the state of New Hampshire for 2020–2100. Key drivers of change were identified through information gathered from six sources: historical trends, existing plans relating to New Hampshire’s land-cover future, surveys, existing population scenarios, key informant interviews with diverse stakeholders, and input from subject-matter experts. Scenarios were developed in parallel with information gathering, with details added iteratively as new questions emerged. The final scenarios span a continuum from spatially dispersed development with a low value placed on ecosystem services (Backyard Amenities) to concentrated development with a high value placed on ecosystem services (the Community Amenities family). The Community family includes two population scenarios (Large Community and Small Community), to be combined with two scenarios for land cover (Protection of Wildlands and Promotion of Local Food), producing combinations that bring the total number of scenarios to six. Between Backyard Amenities and Community Amenities is a scenario based on linear extrapolations of current trends (Linear Trends). Custom models were used to simulate decadal change in land cover, population density, and impervious cover. We present raster maps and proportion of impervious cover for HUC10 watersheds under each scenario and discuss the trade-offs of our translation and modeling approach within the context of contemporary scenario projects

    Doctor of Philosophy

    Get PDF
    dissertationWildfire is a common hazard in the western U.S. that can cause significant loss of life and property. When a fire approaches a community and becomes a threat to the residents, emergency managers need to take into account both fire behavior and the expected response of the threatened population to warnings before they issue protective action recommendations to the residents at risk. In wildfire evacuation practices, incident commanders use prominent geographic features (e.g., rivers, roads, and ridgelines) as trigger points, such that when a fire crosses a feature, the selected protective action recommendation will be issued to the residents at risk. This dissertation examines the dynamics of evacuation timing by coupling wildfire spread modeling, trigger modeling, reverse geocoding, and traffic simulation to model wildfire evacuation as a coupled human-environmental system. This dissertation is composed of three manuscripts. In the first manuscript, wildfire simulation and household-level trigger modeling are coupled to stage evacuation warnings. This work presents a bottom-up approach to constructing evacuation warning zones and is characterized by fine-grain, data-driven spatial modeling. The results in this work will help improve our understanding and representation of the spatiotemporal dynamics in wildfire evacuation timing and warnings. The second manuscript integrates trigger modeling and reverse geocoding to extract and select prominent geographic features along the boundary of a trigger buffer. A case study using a global gazetteer GeoNames demonstrates the potential value of the proposed method in facilitating communications in real-world evacuation practice. This work also sheds light on using reverse geocoding in other environmental modeling applications. The third manuscript explores the spatiotemporal dynamics behind evacuation timing by coupling fire and traffic simulation models. The proposed method sets wildfire evacuation triggers based on the estimated evacuation times using agent-based traffic simulation and could be potentially used in evacuation planning. In summary, this dissertation enriches existing trigger modeling approaches by coupling fire simulation, reverse geocoding, and traffic simulation. A framework for modeling wildfire evacuation as a coupled human-environmental system using triggers is proposed. Moreover, this dissertation also attempts to advocate and promote open science in wildfire evacuation modeling by using open data and software tools in different phases of modeling and simulation

    Doctor of Philosophy

    Get PDF
    dissertationWildfire is a common hazard in the western U.S. that can cause significant loss of life and property. When a fire approaches a community and becomes a threat to the residents, emergency managers need to take into account both fire behavior and the expected response of the threatened population to warnings before they issue protective action recommendations to the residents at risk. In wildfire evacuation practices, incident commanders use prominent geographic features (e.g., rivers, roads, and ridgelines) as trigger points, such that when a fire crosses a feature, the selected protective action recommendation will be issued to the residents at risk. This dissertation examines the dynamics of evacuation timing by coupling wildfire spread modeling, trigger modeling, reverse geocoding, and traffic simulation to model wildfire evacuation as a coupled human-environmental system. This dissertation is composed of three manuscripts. In the first manuscript, wildfire simulation and household-level trigger modeling are coupled to stage evacuation warnings. This work presents a bottom-up approach to constructing evacuation warning zones and is characterized by fine-grain, data-driven spatial modeling. The results in this work will help improve our understanding and representation of the spatiotemporal dynamics in wildfire evacuation timing and warnings. The second manuscript integrates trigger modeling and reverse geocoding to extract and select prominent geographic features along the boundary of a trigger buffer. A case study using a global gazetteer GeoNames demonstrates the potential value of the proposed method in facilitating communications in real-world evacuation practice. This work also sheds light on using reverse geocoding in other environmental modeling applications. The third manuscript explores the spatiotemporal dynamics behind evacuation timing by coupling fire and traffic simulation models. The proposed method sets wildfire evacuation triggers based on the estimated evacuation times using agent-based traffic simulation and could be potentially used in evacuation planning. In summary, this dissertation enriches existing trigger modeling approaches by coupling fire simulation, reverse geocoding, and traffic simulation. A framework for modeling wildfire evacuation as a coupled human-environmental system using triggers is proposed. Moreover, this dissertation also attempts to advocate and promote open science in wildfire evacuation modeling by using open data and software tools in different phases of modeling and simulation

    Pedestrian Dynamics: Modeling and Analyzing Cognitive Processes and Traffic Flows to Evaluate Facility Service Level

    Get PDF
    Walking is the oldest and foremost mode of transportation through history and the prevalence of walking has increased. Effective pedestrian model is crucial to evaluate pedestrian facility service level and to enhance pedestrian safety, performance, and satisfaction. The objectives of this study were to: (1) validate the efficacy of utilizing queueing network model, which predicts cognitive information processing time and task performance; (2) develop a generalized queueing network based cognitive information processing model that can be utilized and applied to construct pedestrian cognitive structure and estimate the reaction time with the first moment of service time distribution; (3) investigate pedestrian behavior through naturalistic and experimental observations to analyze the effects of environment settings and psychological factors in pedestrians; and (4) develop pedestrian level of service (LOS) metrics that are quick and practical to identify improvement points in pedestrian facility design. Two empirical and two analytical studies were conducted to address the research objectives. The first study investigated the efficacy of utilizing queueing network in modeling and predicting the cognitive information processing time. Motion capture system was utilized to collect detailed pedestrian movement. The predicted reaction time using queueing network was compared with the results from the empirical study to validate the performance of the model. No significant difference between model and empirical results was found with respect to mean reaction time. The second study endeavored to develop a generalized queueing network system so the task can be modeled with the approximated queueing network and its first moment of any service time distribution. There was no significant difference between empirical study results and the proposed model with respect to mean reaction time. Third study investigated methods to quantify pedestrian traffic behavior, and analyze physical and cognitive behavior from the real-world observation and field experiment. Footage from indoor and outdoor corridor was used to quantify pedestrian behavior. Effects of environmental setting and/or psychological factor on travel performance were tested. Finally, adhoc and tailor-made LOS metrics were presented for simple realistic service level assessments. The proposed methodologies were composed of space revision LOS, delay-based LOS, preferred walking speed-based LOS, and ‘blocking probability’

    LUCIA - A Tool for Land Use Change Impact Analysis

    Get PDF

    Cellular automata : a bridge between building variability and urban form control

    Get PDF
    In Porto Alegre, a Brazilian town with 1,5 million inhabitants, zoning guidelines assign similar density parameters but fail to be context-specific. As these regulations are linked to individual plot dimensions, physical growth resulted in heterogeneous and unpredictable urban space. The Floor Space Index (FSI) has been used as physical currency which influences the plot value there hence creating a straightjacket to architects wanting to explore new shapes. This research describes a simultaneous top-down and bottom-up strategy to allow urban rules to emulate architectural flexibility and, at the same time, to empower the city with morphological controls over the urban space. A proposed integrated model was set to generate a wide variety of geometries through the association of morpho-types urban blocks (topdown) to bottom-up strategies using cellular automata integrated to Rhinoceros’ Grasshopper as a generative tool. The model includes context sensibility and daylight evaluation but runs with a similar FSI to the existing urban regulations. The proposed model was applied to an existing block in Porto Alegre demonstrating to be an effective tool to support the design of urban rules. It also indicated possible paths for built environment model integration and the creation of innovative perfomative urban indexes as building’s porosity.O Plano Diretor da cidade de Porto Alegre paradoxalmente atribui índices de densidade por região geográfica ao passo que falha ao desconsiderar o contexto imediato. Uma vez que os índices aplicados estão associados às dimensões de cada lote, o crescimento do ambiente construído é restringido pela unidade de divisão territorial (lote) e resulta em um espaço urbano imprevisível e heterogêneo. Nesse contexto, o indicador de intensidade ‘Índice de Aproveitamento’ (IA) é usado como ‘moeda física’ pelos incorporadores, influenciando o valor do lote e limitando a exploração formal dos arquitetos, via de regra, a prismas regulares. Esta pesquisa propõe um modelo alternativo que une estratégias centralizadoras (top-down) e emergentes (bottom-up) a fim de possibilitar a flexibilidade arquitetônica e o controle da forma do espaço urbano simultaneamente. O modelo generativo proposto objetiva gerar geometrias variadas por meio da associação de tipologias morfológicas de quadra (controle) e autômatos celulares (emergente). O modelo gera edificações de IA similar ao existente e aos especificados no plano diretor ao mesmo tempo que é sensível ao contexto e avalia o desempenho de iluminação natural no ambiente de modelagem Rhinoceros 3D e programação visual Grasshopper. O modelo foi aplicado a uma quadra existente em Porto Alegre e os resultados demonstraram a sua eficácia como ferramenta de projeto para a concepção de regras urbanas. Os resultados indicaram a possibilidade de integração com modelos de outras naturezas e da criação de novos índices urbanos performativos como ‘porosidade’
    corecore