20,773 research outputs found

    Complexity, BioComplexity, the Connectionist Conjecture and Ontology of Complexity\ud

    Get PDF
    This paper develops and integrates major ideas and concepts on complexity and biocomplexity - the connectionist conjecture, universal ontology of complexity, irreducible complexity of totality & inherent randomness, perpetual evolution of information, emergence of criticality and equivalence of symmetry & complexity. This paper introduces the Connectionist Conjecture which states that the one and only representation of Totality is the connectionist one i.e. in terms of nodes and edges. This paper also introduces an idea of Universal Ontology of Complexity and develops concepts in that direction. The paper also develops ideas and concepts on the perpetual evolution of information, irreducibility and computability of totality, all in the context of the Connectionist Conjecture. The paper indicates that the control and communication are the prime functionals that are responsible for the symmetry and complexity of complex phenomenon. The paper takes the stand that the phenomenon of life (including its evolution) is probably the nearest to what we can describe with the term “complexity”. The paper also assumes that signaling and communication within the living world and of the living world with the environment creates the connectionist structure of the biocomplexity. With life and its evolution as the substrate, the paper develops ideas towards the ontology of complexity. The paper introduces new complexity theoretic interpretations of fundamental biomolecular parameters. The paper also develops ideas on the methodology to determine the complexity of “true” complex phenomena.\u

    Generative Adversarial Networks (GANs): Challenges, Solutions, and Future Directions

    Full text link
    Generative Adversarial Networks (GANs) is a novel class of deep generative models which has recently gained significant attention. GANs learns complex and high-dimensional distributions implicitly over images, audio, and data. However, there exists major challenges in training of GANs, i.e., mode collapse, non-convergence and instability, due to inappropriate design of network architecture, use of objective function and selection of optimization algorithm. Recently, to address these challenges, several solutions for better design and optimization of GANs have been investigated based on techniques of re-engineered network architectures, new objective functions and alternative optimization algorithms. To the best of our knowledge, there is no existing survey that has particularly focused on broad and systematic developments of these solutions. In this study, we perform a comprehensive survey of the advancements in GANs design and optimization solutions proposed to handle GANs challenges. We first identify key research issues within each design and optimization technique and then propose a new taxonomy to structure solutions by key research issues. In accordance with the taxonomy, we provide a detailed discussion on different GANs variants proposed within each solution and their relationships. Finally, based on the insights gained, we present the promising research directions in this rapidly growing field.Comment: 42 pages, Figure 13, Table

    The failure tolerance of mechatronic software systems to random and targeted attacks

    Full text link
    This paper describes a complex networks approach to study the failure tolerance of mechatronic software systems under various types of hardware and/or software failures. We produce synthetic system architectures based on evidence of modular and hierarchical modular product architectures and known motifs for the interconnection of physical components to software. The system architectures are then subject to various forms of attack. The attacks simulate failure of critical hardware or software. Four types of attack are investigated: degree centrality, betweenness centrality, closeness centrality and random attack. Failure tolerance of the system is measured by a 'robustness coefficient', a topological 'size' metric of the connectedness of the attacked network. We find that the betweenness centrality attack results in the most significant reduction in the robustness coefficient, confirming betweenness centrality, rather than the number of connections (i.e. degree), as the most conservative metric of component importance. A counter-intuitive finding is that "designed" system architectures, including a bus, ring, and star architecture, are not significantly more failure-tolerant than interconnections with no prescribed architecture, that is, a random architecture. Our research provides a data-driven approach to engineer the architecture of mechatronic software systems for failure tolerance.Comment: Proceedings of the 2013 ASME International Design Engineering Technical Conferences & Computers and Information in Engineering Conference IDETC/CIE 2013 August 4-7, 2013, Portland, Oregon, USA (In Print

    Integrative Complexity: An Alternative Measure for System Modularity

    Get PDF
    Complexity and modularity are important inherent properties of the system. Complexity is the property of the system that has to do with individual system elements and their connective relationship, while modularity is the degree to which a system is made up of relatively independent but interacting elements, with each module typically carrying an isolated set of functionality. Modularization is not necessarily a means of reducing intrinsic complexity of the system but is a mechanism for complexity redistribution that can be better managed by enabling design encapsulation. In this paper, the notion of integrative complexity (IC) is proposed, and the corresponding metric is proposed as an alternative metric for modularity from a complexity management viewpoint. It is also demonstrated using several engineered systems from different application d omains that there is a strong negative correlation between the IC and system modularity. This leads to the conclusion that the IC can be used as an alternative metric for modularity assessment of system architectures.Korea (South). Ministry of Education, Science and Technology (MEST) (National Research Foundation of Korea. Grant NRF2016R1D1A1A09916273

    Correlating Integrative Complexity With System Modularity

    Get PDF
    Modularity is the degree to which a system is made up of relatively independent but interacting elements. Modularization is not necessarily a means of reducing intrinsic complexity of the system, but it is a means of effectively redistributing the total complexity across the system. High degree of modularization enable reductionist strategies of system development and is an effective mechanism for complexity redistribution that can be better managed by system developers by enabling design encapsulation. In this paper, we introduce a complexity attribution framework to enable consistent complexity accounting and management procedure and show that integrative complexity has a strong inverse relationship with system modularity and its implication on complexity management for engineered system design and development.Korea (South). Ministry of Education, Science and Technology (MEST) (National Research Foundation of Korea. NRF-2016R1D1A1A09916273

    A Complex Systems Perspective of Risk Mitigation and Modeling in Development and Acquisition Programs

    Get PDF
    Naval Postgraduate School Acquisition Research Progra
    corecore