17,093 research outputs found

    A network-based dynamical ranking system for competitive sports

    Full text link
    From the viewpoint of networks, a ranking system for players or teams in sports is equivalent to a centrality measure for sports networks, whereby a directed link represents the result of a single game. Previously proposed network-based ranking systems are derived from static networks, i.e., aggregation of the results of games over time. However, the score of a player (or team) fluctuates over time. Defeating a renowned player in the peak performance is intuitively more rewarding than defeating the same player in other periods. To account for this factor, we propose a dynamic variant of such a network-based ranking system and apply it to professional men's tennis data. We derive a set of linear online update equations for the score of each player. The proposed ranking system predicts the outcome of the future games with a higher accuracy than the static counterparts.Comment: 6 figure

    Reconstructing dynamical networks via feature ranking

    Full text link
    Empirical data on real complex systems are becoming increasingly available. Parallel to this is the need for new methods of reconstructing (inferring) the topology of networks from time-resolved observations of their node-dynamics. The methods based on physical insights often rely on strong assumptions about the properties and dynamics of the scrutinized network. Here, we use the insights from machine learning to design a new method of network reconstruction that essentially makes no such assumptions. Specifically, we interpret the available trajectories (data) as features, and use two independent feature ranking approaches -- Random forest and RReliefF -- to rank the importance of each node for predicting the value of each other node, which yields the reconstructed adjacency matrix. We show that our method is fairly robust to coupling strength, system size, trajectory length and noise. We also find that the reconstruction quality strongly depends on the dynamical regime

    Diffusion of scientific credits and the ranking of scientists

    Full text link
    Recently, the abundance of digital data enabled the implementation of graph based ranking algorithms that provide system level analysis for ranking publications and authors. Here we take advantage of the entire Physical Review publication archive (1893-2006) to construct authors' networks where weighted edges, as measured from opportunely normalized citation counts, define a proxy for the mechanism of scientific credit transfer. On this network we define a ranking method based on a diffusion algorithm that mimics the spreading of scientific credits on the network. We compare the results obtained with our algorithm with those obtained by local measures such as the citation count and provide a statistical analysis of the assignment of major career awards in the area of Physics. A web site where the algorithm is made available to perform customized rank analysis can be found at the address http://www.physauthorsrank.orgComment: Revised version. 11 pages, 10 figures, 1 table. The portal to compute the rankings of scientists is at http://www.physauthorsrank.or

    A measure of individual role in collective dynamics

    Get PDF
    Identifying key players in collective dynamics remains a challenge in several research fields, from the efficient dissemination of ideas to drug target discovery in biomedical problems. The difficulty lies at several levels: how to single out the role of individual elements in such intermingled systems, or which is the best way to quantify their importance. Centrality measures describe a node's importance by its position in a network. The key issue obviated is that the contribution of a node to the collective behavior is not uniquely determined by the structure of the system but it is a result of the interplay between dynamics and network structure. We show that dynamical influence measures explicitly how strongly a node's dynamical state affects collective behavior. For critical spreading, dynamical influence targets nodes according to their spreading capabilities. For diffusive processes it quantifies how efficiently real systems may be controlled by manipulating a single node.Comment: accepted for publication in Scientific Report
    • …
    corecore