6,159 research outputs found

    SPATIO-TEMPORAL DYNAMICS OF SHORT-TERM TRAFFIC

    Get PDF
    Short-term traffic forecasting and missing data imputation can benefit from the use of neighboring traffic information, in addition to temporal data alone. However, little attention has been given to quantifying the effect of upstream and downstream traffic on the traffic at current location. The knowledge about temporal and spatial propagation of traffic is still limited in the current literature. To fill this gap, this dissertation research focus on revealing the spatio-temporal correlations between neighboring traffic to develop reliable algorithms for short-term traffic forecasting and data imputation based on spatio-temporal dynamics of traffic. In the first part of this dissertation, spatio-temporal relationships of speed series from consecutive segments were studied for different traffic conditions. The analysis results show that traffic speeds of consecutive segments are highly correlated. While downstream traffic tends to replicate the upstream condition under light traffic conditions, it may also affect upstream condition during congestion and build up situations. These effects were statistically quantified and an algorithm for properly choosing the “best” or most correlated neighbor(s), for potential traffic prediction or imputation purposes was proposed. In the second part of the dissertation, a spatio-temporal kriging (ST-Kriging) model that determines the most desirable extent of spatial and temporal traffic data from neighboring locations was developed for short-term traffic forecasting. The new ST-Kriging model outperforms all benchmark models under various traffic conditions. In the final part of the dissertation, a spatio-temporal data imputation approach was proposed and its performance was evaluated under scenarios with different data missing rates. Compared against previous methods, better flexibility and stable imputation accuracy were reported for this new imputation technique

    Forecasting monthly airline passenger numbers with small datasets using feature engineering and a modified principal component analysis

    Get PDF
    In this study, a machine learning approach based on time series models, different feature engineering, feature extraction, and feature derivation is proposed to improve air passenger forecasting. Different types of datasets were created to extract new features from the core data. An experiment was undertaken with artificial neural networks to test the performance of neurons in the hidden layer, to optimise the dimensions of all layers and to obtain an optimal choice of connection weights – thus the nonlinear optimisation problem could be solved directly. A method of tuning deep learning models using H2O (which is a feature-rich, open source machine learning platform known for its R and Spark integration and its ease of use) is also proposed, where the trained network model is built from samples of selected features from the dataset in order to ensure diversity of the samples and to improve training. A successful application of deep learning requires setting numerous parameters in order to achieve greater model accuracy. The number of hidden layers and the number of neurons, are key parameters in each layer of such a network. Hyper-parameter, grid search, and random hyper-parameter approaches aid in setting these important parameters. Moreover, a new ensemble strategy is suggested that shows potential to optimise parameter settings and hence save more computational resources throughout the tuning process of the models. The main objective, besides improving the performance metric, is to obtain a distribution on some hold-out datasets that resemble the original distribution of the training data. Particular attention is focused on creating a modified version of Principal Component Analysis (PCA) using a different correlation matrix – obtained by a different correlation coefficient based on kinetic energy to derive new features. The data were collected from several airline datasets to build a deep prediction model for forecasting airline passenger numbers. Preliminary experiments show that fine-tuning provides an efficient approach for tuning the ultimate number of hidden layers and the number of neurons in each layer when compared with the grid search method. Similarly, the results show that the modified version of PCA is more effective in data dimension reduction, classes reparability, and classification accuracy than using traditional PCA.</div
    corecore