34 research outputs found

    Speaker verification using attentive multi-scale convolutional recurrent network

    Full text link
    In this paper, we propose a speaker verification method by an Attentive Multi-scale Convolutional Recurrent Network (AMCRN). The proposed AMCRN can acquire both local spatial information and global sequential information from the input speech recordings. In the proposed method, logarithm Mel spectrum is extracted from each speech recording and then fed to the proposed AMCRN for learning speaker embedding. Afterwards, the learned speaker embedding is fed to the back-end classifier (such as cosine similarity metric) for scoring in the testing stage. The proposed method is compared with state-of-the-art methods for speaker verification. Experimental data are three public datasets that are selected from two large-scale speech corpora (VoxCeleb1 and VoxCeleb2). Experimental results show that our method exceeds baseline methods in terms of equal error rate and minimal detection cost function, and has advantages over most of baseline methods in terms of computational complexity and memory requirement. In addition, our method generalizes well across truncated speech segments with different durations, and the speaker embedding learned by the proposed AMCRN has stronger generalization ability across two back-end classifiers.Comment: 21 pages, 6 figures, 8 tables. Accepted for publication in Applied Soft Computin

    Deep Learning for Environmentally Robust Speech Recognition: An Overview of Recent Developments

    Get PDF
    Eliminating the negative effect of non-stationary environmental noise is a long-standing research topic for automatic speech recognition that stills remains an important challenge. Data-driven supervised approaches, including ones based on deep neural networks, have recently emerged as potential alternatives to traditional unsupervised approaches and with sufficient training, can alleviate the shortcomings of the unsupervised methods in various real-life acoustic environments. In this light, we review recently developed, representative deep learning approaches for tackling non-stationary additive and convolutional degradation of speech with the aim of providing guidelines for those involved in the development of environmentally robust speech recognition systems. We separately discuss single- and multi-channel techniques developed for the front-end and back-end of speech recognition systems, as well as joint front-end and back-end training frameworks

    Enhancement in Speaker Identification through Feature Fusion using Advanced Dilated Convolution Neural Network

    Get PDF
    There are various challenges in identifying the speakers accurately. The Extraction of discriminative features is a vital task for accurate identification in the speaker identification task. Nowadays, speaker identification is widely investigated using deep learning. The complex and noisy speech data affects the performance of Mel Frequency Cepstral Coefficients (MFCC); hence, MFCC fails to represent the speaker characteristics accurately. In this proposed work, a novel text-independent speaker identification system is developed to enhance the performance by fusion of Log-MelSpectrum and excitation features. The excitation information is obtained due to the vibration of vocal folds, and it is represented using Linear Prediction (LP) residual. The various types of features extracted from the excitation are residual phase, sharpness, Energy of Excitation (EoE), and Strength of Excitation (SoE). The extracted features were processed with the dilated convolution neural network (dilated CNN) to fulfill the identification task. The extensive evaluation showed that the fusion of excitation features gives better results than the existing methods. The accuracy reaches 94.12% for 11 complex classes and 91.34% for 80 speakers, and Equal Error Rate (EER) is reduced to 1.16% for the proposed model. The proposed model is tested with the Librispeech corpus using Matlab 2021b tool, outperforming the existing baseline models. The proposed model achieves an accuracy improvement of 1.34% compared to the baseline system

    Noise reduction optimization of sound sensor based on a Conditional Generation Adversarial Network

    Get PDF
    To address the problems in the traditional speech signal noise elimination methods, such as the residual noise, poor real-time performance and narrow applications a new method is proposed to eliminate network voice noise based on deep learning of conditional generation adversarial network. In terms of the perceptual evaluation of speech quality (PESQ) and shorttime objective intelligibility measure (STOI) functions used as the loss function in the neural network, which were used as the loss function in the neural network, the flexibility of the whole network was optimized, and the training process of the model simplified. The experimental results indicate that, under the noisy environment, especially in a restaurant, the proposed noise reduction scheme improves the STOI score by 26.23% and PESQ score by 17.18%, respectively, compared with the traditional Wiener noise reduction algorithm. Therefore, the sound sensor\u27s noise reduction scheme through our approach has achieved a remarkable noise reduction effect, more useful information transmission, and stronger practicability

    Low latency modeling of temporal contexts for speech recognition

    Get PDF
    This thesis focuses on the development of neural network acoustic models for large vocabulary continuous speech recognition (LVCSR) to satisfy the design goals of low latency and low computational complexity. Low latency enables online speech recognition; and low computational complexity helps reduce the computational cost both during training and inference. Long span sequential dependencies and sequential distortions in the input vector sequence are a major challenge in acoustic modeling. Recurrent neural networks have been shown to effectively model these dependencies. Specifically, bidirectional long short term memory (BLSTM) networks, provide state-of-the-art performance across several LVCSR tasks. However the deployment of bidirectional models for online LVCSR is non-trivial due to their large latency; and unidirectional LSTM models are typically preferred. In this thesis we explore the use of hierarchical temporal convolution to model long span temporal dependencies. We propose a sub-sampled variant of these temporal convolution neural networks, termed time-delay neural networks (TDNNs). These sub-sampled TDNNs reduce the computation complexity by ~5x, compared to TDNNs, during frame randomized pre-training. These models are shown to be effective in modeling long-span temporal contexts, however there is a performance gap compared to (B)LSTMs. As recent advancements in acoustic model training have eliminated the need for frame randomized pre-training we modify the TDNN architecture to use higher sampling rates, as the increased computation can be amortized over the sequence. These variants of sub- sampled TDNNs provide performance superior to unidirectional LSTM networks, while also affording a lower real time factor (RTF) during inference. However we show that the BLSTM models outperform both the TDNN and LSTM models. We propose a hybrid architecture interleaving temporal convolution and LSTM layers which is shown to outperform the BLSTM models. Further we improve these BLSTM models by using higher frame rates at lower layers and show that the proposed TDNN- LSTM model performs similar to these superior BLSTM models, while reducing the overall latency to 200 ms. Finally we describe an online system for reverberation robust ASR, using the above described models in conjunction with other data augmentation techniques like reverberation simulation, which simulates far-field environments, and volume perturbation, which helps tackle volume variation even without gain normalization

    SYNTHESIZING DYSARTHRIC SPEECH USING MULTI-SPEAKER TTS FOR DSYARTHRIC SPEECH RECOGNITION

    Get PDF
    Dysarthria is a motor speech disorder often characterized by reduced speech intelligibility through slow, uncoordinated control of speech production muscles. Automatic Speech recognition (ASR) systems may help dysarthric talkers communicate more effectively. However, robust dysarthria-specific ASR requires a significant amount of training speech is required, which is not readily available for dysarthric talkers. In this dissertation, we investigate dysarthric speech augmentation and synthesis methods. To better understand differences in prosodic and acoustic characteristics of dysarthric spontaneous speech at varying severity levels, a comparative study between typical and dysarthric speech was conducted. These characteristics are important components for dysarthric speech modeling, synthesis, and augmentation. For augmentation, prosodic transformation and time-feature masking have been proposed. For dysarthric speech synthesis, this dissertation has introduced a modified neural multi-talker TTS by adding a dysarthria severity level coefficient and a pause insertion model to synthesize dysarthric speech for varying severity levels. In addition, we have extended this work by using a label propagation technique to create more meaningful control variables such as a continuous Respiration, Laryngeal and Tongue (RLT) parameter, even for datasets that only provide discrete dysarthria severity level information. This approach increases the controllability of the system, so we are able to generate more dysarthric speech with a broader range. To evaluate their effectiveness for synthesis of training data, dysarthria-specific speech recognition was used. Results show that a DNN-HMM model trained on additional synthetic dysarthric speech achieves WER improvement of 12.2% compared to the baseline, and that the addition of the severity level and pause insertion controls decrease WER by 6.5%, showing the effectiveness of adding these parameters. Overall results on the TORGO database demonstrate that using dysarthric synthetic speech to increase the amount of dysarthric-patterned speech for training has a significant impact on the dysarthric ASR systems

    Attention-Inspired Artificial Neural Networks for Speech Processing: A Systematic Review

    Get PDF
    Artificial Neural Networks (ANNs) were created inspired by the neural networks in the human brain and have been widely applied in speech processing. The application areas of ANN include: Speech recognition, speech emotion recognition, language identification, speech enhancement, and speech separation, amongst others. Likewise, given that speech processing performed by humans involves complex cognitive processes known as auditory attention, there has been a growing amount of papers proposing ANNs supported by deep learning algorithms in conjunction with some mechanism to achieve symmetry with the human attention process. However, while these ANN approaches include attention, there is no categorization of attention integrated into the deep learning algorithms and their relation with human auditory attention. Therefore, we consider it necessary to have a review of the different ANN approaches inspired in attention to show both academic and industry experts the available models for a wide variety of applications. Based on the PRISMA methodology, we present a systematic review of the literature published since 2000, in which deep learning algorithms are applied to diverse problems related to speech processing. In this paper 133 research works are selected and the following aspects are described: (i) Most relevant features, (ii) ways in which attention has been implemented, (iii) their hypothetical relationship with human attention, and (iv) the evaluation metrics used. Additionally, the four publications most related with human attention were analyzed and their strengths and weaknesses were determined
    corecore