10,096 research outputs found

    An End-to-End Stochastic Network Calculus with Effective Bandwidth and Effective Capacity

    Full text link
    Network calculus is an elegant theory which uses envelopes to determine the worst-case performance bounds in a network. Statistical network calculus is the probabilistic version of network calculus, which strives to retain the simplicity of envelope approach from network calculus and use the arguments of statistical multiplexing to determine probabilistic performance bounds in a network. The tightness of the determined probabilistic bounds depends on the efficiency of modelling stochastic properties of the arrival traffic and the service available to the traffic at a network node. The notion of effective bandwidth from large deviations theory is a well known statistical descriptor of arrival traffic. Similarly, the notion of effective capacity summarizes the time varying resource availability to the arrival traffic at a network node. The main contribution of this paper is to establish an end-to-end stochastic network calculus with the notions of effective bandwidth and effective capacity which provides efficient end-to-end delay and backlog bounds that grows linearly in the number of nodes (HH) traversed by the arrival traffic, under the assumption of independence.Comment: 17 page

    A Novel Admission Control Model in Cloud Computing

    Full text link
    With the rapid development of Cloud computing technologies and wide adopt of Cloud services and applications, QoS provisioning in Clouds becomes an important research topic. In this paper, we propose an admission control mechanism for Cloud computing. In particular we consider the high volume of simultaneous requests for Cloud services and develop admission control for aggregated traffic flows to address this challenge. By employ network calculus, we determine effective bandwidth for aggregate flow, which is used for making admission control decision. In order to improve network resource allocation while achieving Cloud service QoS, we investigate the relationship between effective bandwidth and equivalent capacity. We have also conducted extensive experiments to evaluate performance of the proposed admission control mechanism

    Low-Latency Millimeter-Wave Communications: Traffic Dispersion or Network Densification?

    Full text link
    This paper investigates two strategies to reduce the communication delay in future wireless networks: traffic dispersion and network densification. A hybrid scheme that combines these two strategies is also considered. The probabilistic delay and effective capacity are used to evaluate performance. For probabilistic delay, the violation probability of delay, i.e., the probability that the delay exceeds a given tolerance level, is characterized in terms of upper bounds, which are derived by applying stochastic network calculus theory. In addition, to characterize the maximum affordable arrival traffic for mmWave systems, the effective capacity, i.e., the service capability with a given quality-of-service (QoS) requirement, is studied. The derived bounds on the probabilistic delay and effective capacity are validated through simulations. These numerical results show that, for a given average system gain, traffic dispersion, network densification, and the hybrid scheme exhibit different potentials to reduce the end-to-end communication delay. For instance, traffic dispersion outperforms network densification, given high average system gain and arrival rate, while it could be the worst option, otherwise. Furthermore, it is revealed that, increasing the number of independent paths and/or relay density is always beneficial, while the performance gain is related to the arrival rate and average system gain, jointly. Therefore, a proper transmission scheme should be selected to optimize the delay performance, according to the given conditions on arrival traffic and system service capability

    Performance analysis of a Master/Slave switched Ethernet for military embedded applications

    Get PDF
    Current military communication network is a generation old and is no longer effective in meeting the emerging requirements imposed by the next generation military embedded applications. A new communication network based upon Full Duplex Switched Ethernet is proposed in this paper to overcome these limitations. To allow existing military subsystems to be easily supported by a Switched Ethernet network, our proposal consists in keeping their current centralized communication scheme by using an optimized master/slave transmission control on Switched Ethernet thanks to the Flexible Time Triggered (FTT) paradigm. Our main objective is to assess the performance of such a proposal and estimate the quality of service we can expect in terms of latency. Using the Network Calculus formalism, schedulability analysis are determined. These analysis are illustrated in the case of a realistic military embedded application extracted from a real military aircraft network, to highlight the proposal's ability to support the required time constrained communications

    Latency Bounds of Packet-Based Fronthaul for Cloud-RAN with Functionality Split

    Get PDF
    The emerging Cloud-RAN architecture within the fifth generation (5G) of wireless networks plays a vital role in enabling higher flexibility and granularity. On the other hand, Cloud-RAN architecture introduces an additional link between the central, cloudified unit and the distributed radio unit, namely fronthaul (FH). Therefore, the foreseen reliability and latency for 5G services should also be provisioned over the FH link. In this paper, focusing on Ethernet as FH, we present a reliable packet-based FH communication and demonstrate the upper and lower bounds of latency that can be offered. These bounds yield insights into the trade-off between reliability and latency, and enable the architecture design through choice of splitting point, focusing on high layer split between PDCP and RLC and low layer split between MAC and PHY, under different FH bandwidth and traffic properties. Presented model is then analyzed both numerically and through simulation, with two classes of 5G services that are ultra reliable low latency (URLL) and enhanced mobile broadband (eMBB).Comment: 6 pages, 7 figures, 3 tables, conference paper (ICC19
    corecore