904 research outputs found

    A sticky HDP-HMM with application to speaker diarization

    Get PDF
    We consider the problem of speaker diarization, the problem of segmenting an audio recording of a meeting into temporal segments corresponding to individual speakers. The problem is rendered particularly difficult by the fact that we are not allowed to assume knowledge of the number of people participating in the meeting. To address this problem, we take a Bayesian nonparametric approach to speaker diarization that builds on the hierarchical Dirichlet process hidden Markov model (HDP-HMM) of Teh et al. [J. Amer. Statist. Assoc. 101 (2006) 1566--1581]. Although the basic HDP-HMM tends to over-segment the audio data---creating redundant states and rapidly switching among them---we describe an augmented HDP-HMM that provides effective control over the switching rate. We also show that this augmentation makes it possible to treat emission distributions nonparametrically. To scale the resulting architecture to realistic diarization problems, we develop a sampling algorithm that employs a truncated approximation of the Dirichlet process to jointly resample the full state sequence, greatly improving mixing rates. Working with a benchmark NIST data set, we show that our Bayesian nonparametric architecture yields state-of-the-art speaker diarization results.Comment: Published in at http://dx.doi.org/10.1214/10-AOAS395 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Bayesian nonparametric multilevel modelling and applications

    Full text link
    Our research aims at contributing to the multilevel modeling in data analytics. We address the task of multilevel clustering, multilevel regression, and classification. We provide state of the art solution for the critical problem

    A survey on Bayesian nonparametric learning

    Full text link
    © 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM. Bayesian (machine) learning has been playing a significant role in machine learning for a long time due to its particular ability to embrace uncertainty, encode prior knowledge, and endow interpretability. On the back of Bayesian learning's great success, Bayesian nonparametric learning (BNL) has emerged as a force for further advances in this field due to its greater modelling flexibility and representation power. Instead of playing with the fixed-dimensional probabilistic distributions of Bayesian learning, BNL creates a new “game” with infinite-dimensional stochastic processes. BNL has long been recognised as a research subject in statistics, and, to date, several state-of-the-art pilot studies have demonstrated that BNL has a great deal of potential to solve real-world machine-learning tasks. However, despite these promising results, BNL has not created a huge wave in the machine-learning community. Esotericism may account for this. The books and surveys on BNL written by statisticians are overcomplicated and filled with tedious theories and proofs. Each is certainly meaningful but may scare away new researchers, especially those with computer science backgrounds. Hence, the aim of this article is to provide a plain-spoken, yet comprehensive, theoretical survey of BNL in terms that researchers in the machine-learning community can understand. It is hoped this survey will serve as a starting point for understanding and exploiting the benefits of BNL in our current scholarly endeavours. To achieve this goal, we have collated the extant studies in this field and aligned them with the steps of a standard BNL procedure-from selecting the appropriate stochastic processes through manipulation to executing the model inference algorithms. At each step, past efforts have been thoroughly summarised and discussed. In addition, we have reviewed the common methods for implementing BNL in various machine-learning tasks along with its diverse applications in the real world as examples to motivate future studies

    Structure Learning in Audio

    Get PDF

    Sensor based real-time process monitoring for ultra-precision manufacturing processes with non-linearity and non-stationarity

    Get PDF
    This research investigates methodologies for real-time process monitoring in ultra-precision manufacturing processes, specifically, chemical mechanical planarization (CMP) and ultra-precision machining (UPM), are investigated in this dissertation.The three main components of this research are as follows: (1) developing a predictive modeling approaches for early detection of process anomalies/change points, (2) devising approaches that can capture the non-Gaussian and non-stationary characteristics of CMP and UPM processes, and (3) integrating multiple sensor data to make more reliable process related decisions in real-time.In the first part, we establish a quantitative relationship between CMP process performance, such as material removal rate (MRR) and data acquired from wireless vibration sensors. Subsequently, a non-linear sequential Bayesian analysis is integrated with decision theoretic concepts for detection of CMP process end-point for blanket copper wafers. Using this approach, CMP polishing end-point was detected within a 5% error rate.Next, a non-parametric Bayesian analytical approach is utilized to capture the inherently complex, non-Gaussian, and non-stationary sensor signal patterns observed in CMP process. An evolutionary clustering analysis, called Recurrent Nested Dirichlet Process (RNDP) approach is developed for monitoring CMP process changes using MEMS vibration signals. Using this novel signal analysis approach, process drifts are detected within 20 milliseconds and is assessed to be 3-7 times faster than traditional SPC charts. This is very beneficial to the industry from an application standpoint, because, wafer yield losses will be mitigated to a great extent, if the onset of CMP process drifts can be detected timely and accurately.Lastly, a non-parametric Bayesian modeling approach, termed Dirichlet Process (DP) is combined with a multi-level hierarchical information fusion technique for monitoring of surface finish in UPM process. Using this approach, signal patterns from six different sensors (three axis vibration and force) are integrated based on information fusion theory. It was observed that using experimental UPM sensor data that process decisions based on the multiple sensor information fusion approach were 15%-30% more accurate than the decisions from individual sensors. This will enable more accurate and reliable estimation of process conditions in ultra-precision manufacturing applications

    Observing the Observer (II): Deciding When to Decide

    Get PDF
    In a companion paper [1], we have presented a generic approach for inferring how subjects make optimal decisions under uncertainty. From a Bayesian decision theoretic perspective, uncertain representations correspond to “posterior” beliefs, which result from integrating (sensory) information with subjective “prior” beliefs. Preferences and goals are encoded through a “loss” (or “utility”) function, which measures the cost incurred by making any admissible decision for any given (hidden or unknown) state of the world. By assuming that subjects make optimal decisions on the basis of updated (posterior) beliefs and utility (loss) functions, one can evaluate the likelihood of observed behaviour. In this paper, we describe a concrete implementation of this meta-Bayesian approach (i.e. a Bayesian treatment of Bayesian decision theoretic predictions) and demonstrate its utility by applying it to both simulated and empirical reaction time data from an associative learning task. Here, inter-trial variability in reaction times is modelled as reflecting the dynamics of the subjects' internal recognition process, i.e. the updating of representations (posterior densities) of hidden states over trials while subjects learn probabilistic audio-visual associations. We use this paradigm to demonstrate that our meta-Bayesian framework allows for (i) probabilistic inference on the dynamics of the subject's representation of environmental states, and for (ii) model selection to disambiguate between alternative preferences (loss functions) human subjects could employ when dealing with trade-offs, such as between speed and accuracy. Finally, we illustrate how our approach can be used to quantify subjective beliefs and preferences that underlie inter-individual differences in behaviour
    • …
    corecore