233 research outputs found

    DTIME: Discrete Topological Imaging for Multipath Environments

    Get PDF
    This report is presented to summarize work completed under a DARPA seedling project for the imaging of urban environments, using radio multipath measurements and topology extraction algorithms. This report provides an overview of the mathematical theory behind the work, as well as a description of the simulation and results that accompanies the theory

    Cyclic Cellular Automata on Networks and Cohomological Waves

    Get PDF
    A dynamic coverage problem for sensor networks that are sufficiently dense but not localized is considered. By maintaining only a small fraction of sensors on at any time, we are aimed to find a decentralized protocol for establishing dynamic, sweeping barriers of awake-state sensors. Network cyclic cellular automata is used to generate waves. By rigorously analyzing network-based cyclic cellular automata in the context of a system of narrow hallways, it shows that waves of awake-state nodes turn corners and automatically solve pusuit/evasion-type problems without centralized coordination. As a corollary of this work, we unearth some interesting topological interpretations of features previously observed in cyclic cellular automata (CCA). By considering CCA over networks and completing to simplicial complexes, we induce dynamics on the higher-dimensional complex. In this setting, waves are seen to be generated by topological defects with a nontrivial degree (or winding number). The simplicial complex has the topological type of the underlying map of the workspace (a subset of the plane), and the resulting waves can be classified cohomologically. This allows one to program pulses in the sensor network according to cohomology class. We give a realization theorem for such pulse waves
    • …
    corecore