24,154 research outputs found

    Graph-Embedding Empowered Entity Retrieval

    Full text link
    In this research, we improve upon the current state of the art in entity retrieval by re-ranking the result list using graph embeddings. The paper shows that graph embeddings are useful for entity-oriented search tasks. We demonstrate empirically that encoding information from the knowledge graph into (graph) embeddings contributes to a higher increase in effectiveness of entity retrieval results than using plain word embeddings. We analyze the impact of the accuracy of the entity linker on the overall retrieval effectiveness. Our analysis further deploys the cluster hypothesis to explain the observed advantages of graph embeddings over the more widely used word embeddings, for user tasks involving ranking entities

    Entity Query Feature Expansion Using Knowledge Base Links

    Get PDF
    Recent advances in automatic entity linking and knowledge base construction have resulted in entity annotations for document and query collections. For example, annotations of entities from large general purpose knowledge bases, such as Freebase and the Google Knowledge Graph. Understanding how to leverage these entity annotations of text to improve ad hoc document retrieval is an open research area. Query expansion is a commonly used technique to improve retrieval effectiveness. Most previous query expansion approaches focus on text, mainly using unigram concepts. In this paper, we propose a new technique, called entity query feature expansion (EQFE) which enriches the query with features from entities and their links to knowledge bases, including structured attributes and text. We experiment using both explicit query entity annotations and latent entities. We evaluate our technique on TREC text collections automatically annotated with knowledge base entity links, including the Google Freebase Annotations (FACC1) data. We find that entity-based feature expansion results in significant improvements in retrieval effectiveness over state-of-the-art text expansion approaches

    Knowledge-rich Image Gist Understanding Beyond Literal Meaning

    Full text link
    We investigate the problem of understanding the message (gist) conveyed by images and their captions as found, for instance, on websites or news articles. To this end, we propose a methodology to capture the meaning of image-caption pairs on the basis of large amounts of machine-readable knowledge that has previously been shown to be highly effective for text understanding. Our method identifies the connotation of objects beyond their denotation: where most approaches to image understanding focus on the denotation of objects, i.e., their literal meaning, our work addresses the identification of connotations, i.e., iconic meanings of objects, to understand the message of images. We view image understanding as the task of representing an image-caption pair on the basis of a wide-coverage vocabulary of concepts such as the one provided by Wikipedia, and cast gist detection as a concept-ranking problem with image-caption pairs as queries. To enable a thorough investigation of the problem of gist understanding, we produce a gold standard of over 300 image-caption pairs and over 8,000 gist annotations covering a wide variety of topics at different levels of abstraction. We use this dataset to experimentally benchmark the contribution of signals from heterogeneous sources, namely image and text. The best result with a Mean Average Precision (MAP) of 0.69 indicate that by combining both dimensions we are able to better understand the meaning of our image-caption pairs than when using language or vision information alone. We test the robustness of our gist detection approach when receiving automatically generated input, i.e., using automatically generated image tags or generated captions, and prove the feasibility of an end-to-end automated process

    Look before you Hop: Conversational Question Answering over Knowledge Graphs Using Judicious Context Expansion

    No full text
    Fact-centric information needs are rarely one-shot; users typically ask follow-up questions to explore a topic. In such a conversational setting, the user's inputs are often incomplete, with entities or predicates left out, and ungrammatical phrases. This poses a huge challenge to question answering (QA) systems that typically rely on cues in full-fledged interrogative sentences. As a solution, we develop CONVEX: an unsupervised method that can answer incomplete questions over a knowledge graph (KG) by maintaining conversation context using entities and predicates seen so far and automatically inferring missing or ambiguous pieces for follow-up questions. The core of our method is a graph exploration algorithm that judiciously expands a frontier to find candidate answers for the current question. To evaluate CONVEX, we release ConvQuestions, a crowdsourced benchmark with 11,200 distinct conversations from five different domains. We show that CONVEX: (i) adds conversational support to any stand-alone QA system, and (ii) outperforms state-of-the-art baselines and question completion strategies

    Neural Architecture for Question Answering Using a Knowledge Graph and Web Corpus

    Full text link
    In Web search, entity-seeking queries often trigger a special Question Answering (QA) system. It may use a parser to interpret the question to a structured query, execute that on a knowledge graph (KG), and return direct entity responses. QA systems based on precise parsing tend to be brittle: minor syntax variations may dramatically change the response. Moreover, KG coverage is patchy. At the other extreme, a large corpus may provide broader coverage, but in an unstructured, unreliable form. We present AQQUCN, a QA system that gracefully combines KG and corpus evidence. AQQUCN accepts a broad spectrum of query syntax, between well-formed questions to short `telegraphic' keyword sequences. In the face of inherent query ambiguities, AQQUCN aggregates signals from KGs and large corpora to directly rank KG entities, rather than commit to one semantic interpretation of the query. AQQUCN models the ideal interpretation as an unobservable or latent variable. Interpretations and candidate entity responses are scored as pairs, by combining signals from multiple convolutional networks that operate collectively on the query, KG and corpus. On four public query workloads, amounting to over 8,000 queries with diverse query syntax, we see 5--16% absolute improvement in mean average precision (MAP), compared to the entity ranking performance of recent systems. Our system is also competitive at entity set retrieval, almost doubling F1 scores for challenging short queries.Comment: Accepted to Information Retrieval Journa

    DocTag2Vec: An Embedding Based Multi-label Learning Approach for Document Tagging

    Full text link
    Tagging news articles or blog posts with relevant tags from a collection of predefined ones is coined as document tagging in this work. Accurate tagging of articles can benefit several downstream applications such as recommendation and search. In this work, we propose a novel yet simple approach called DocTag2Vec to accomplish this task. We substantially extend Word2Vec and Doc2Vec---two popular models for learning distributed representation of words and documents. In DocTag2Vec, we simultaneously learn the representation of words, documents, and tags in a joint vector space during training, and employ the simple kk-nearest neighbor search to predict tags for unseen documents. In contrast to previous multi-label learning methods, DocTag2Vec directly deals with raw text instead of provided feature vector, and in addition, enjoys advantages like the learning of tag representation, and the ability of handling newly created tags. To demonstrate the effectiveness of our approach, we conduct experiments on several datasets and show promising results against state-of-the-art methods.Comment: 10 page
    • …
    corecore