140 research outputs found

    Algorithmic studies on PCB routing

    Get PDF
    As IC technology advances, the package size keeps shrinking while the pin count of a package keeps increasing. A modern IC package can have a pin count of thousands. As a result, a complex printed circuit board (PCB) can host more than ten thousand signal nets. Such a huge pin count and net count make manual design of packages and PCBs an extremely time-consuming and error-prone task. On the other hand, increasing clock frequency imposes various physical constraints on PCB routing. These constraints make traditional IC and PCB routers not applicable to modern PCB routing. To the best of our knowledge, there is no mature commercial or academic automated router that handles these constraints well. Therefore, automated PCB routers that are tuned to handle such constraints become a necessity in modern design. In this dissertation, we propose novel algorithms for three major aspects of PCB routing: escape routing, area routing and layer assignment. Escape routing for packages and PCBs has been studied extensively in the past. Network flow is pervasively used to model this problem. However, previous studies are incomplete in two senses. First, none of the previous works correctly model the diagonal capacity, which is essential for 45 degree routing in most packages and PCBs. As a result, existing algorithms may either produce routing solutions that violate the diagonal capacity or fail to output a legal routing even though one exists. Second, few works discuss the escape routing problem of differential pairs. In high-performance PCBs, many critical nets use differential pairs to transmit signals. How to escape differential pairs from a pin array is an important issue that has received too little attention in the literature. In this dissertation, we propose a new network flow model that guarantees the correctness when diagonal capacity is taken into consideration. This model leads to the first optimal algorithm for escape routing. We also extend our model to handle missing pins. We then propose two algorithms for the differential pair escape routing problem. The first one computes the optimal routing for a single differential pair while the second one is able to simultaneously route multiple differential pairs considering both routability and wire length. We then propose a two-stage routing scheme based on the two algorithms. In our routing scheme, the second algorithm is used to generate initial routing and the first algorithm is used to perform rip-up and reroute. Length-constrained routing is another very important problem for PCB routing. Previous length-constrained routers all have assumptions on the routing topology. We propose a routing scheme that is free of any restriction on the routing topology. The novelty of our proposed routing scheme is that we view the length-constrained routing problem as an area assignment problem and use a placement structure to help transform the area assignment problem into a mathematical programming problem. Experimental results show that our routing scheme can handle practical designs that previous routers cannot handle. For designs that they could handle, our router runs much faster. Length-constrained routing requires the escaped nets to have matching ordering along the boundaries of the pin arrays. However, in some practical designs, the net ordering might be mismatched. To address this issue, we propose a preprocessing step to untangle such twisted nets. We also introduce a practical routing style, which we call single-detour routing, to simplify the untangling problem. We discover a necessary and sufficient condition for the existence of single-detour routing solutions and present a dynamic programming based algorithm that optimally solves the problem. By integrating our algorithm into the bus router in a length-constrained router, we show that many routing problems that cannot be solved previously can now be solved with insignificant increase in runtime. The nets on a PCB are usually grouped into buses. Because of the high pin density of the packages, the buses need to be assigned into multiple routing layers. We propose a layer assignment algorithm to assign a set of buses into multiple layers without causing any conflict. Our algorithm guarantees to produce a layer assignment with minimum number of layers. The key idea is to transform the layer assignment problem into a bipartite matching problem. This research result is an improvement over a previous work, which is optimal for only one layer

    Rationale, Scenarios, and Profiles for the Application of the Internet Protocol Suite (IPS) in Space Operations

    Get PDF
    This greenbook captures some of the current, planned and possible future uses of the Internet Protocol (IP) as part of Space Operations. It attempts to describe how the Internet Protocol is used in specific scenarios. Of primary focus is low-earth-orbit space operations, which is referred to here as the design reference mission (DRM). This is because most of the program experience drawn upon derives from this type of mission. Application profiles are provided. This includes parameter settings programs have proposed for sending IP datagrams over CCSDS links, the minimal subsets and features of the IP protocol suite and applications expected for interoperability between projects, and the configuration, operations and maintenance of these IP functions. Of special interest is capturing the lessons learned from the Constellation Program in this area, since that program included a fairly ambitious use of the Internet Protocol

    Traffic Re-engineering: Extending Resource Pooling Through the Application of Re-feedback

    Get PDF
    Parallelism pervades the Internet, yet efficiently pooling this increasing path diversity has remained elusive. With no holistic solution for resource pooling, each layer of the Internet architecture attempts to balance traffic according to its own needs, potentially at the expense of others. From the edges, traffic is implicitly pooled over multiple paths by retrieving content from different sources. Within the network, traffic is explicitly balanced across multiple links through the use of traffic engineering. This work explores how the current architecture can be realigned to facilitate resource pooling at both network and transport layers, where tension between stakeholders is strongest. The central theme of this thesis is that traffic engineering can be performed more efficiently, flexibly and robustly through the use of re-feedback. A cross-layer architecture is proposed for sharing the responsibility for resource pooling across both hosts and network. Building on this framework, two novel forms of traffic management are evaluated. Efficient pooling of traffic across paths is achieved through the development of an in-network congestion balancer, which can function in the absence of multipath transport. Network and transport mechanisms are then designed and implemented to facilitate path fail-over, greatly improving resilience without requiring receiver side cooperation. These contributions are framed by a longitudinal measurement study which provides evidence for many of the design choices taken. A methodology for scalably recovering flow metrics from passive traces is developed which in turn is systematically applied to over five years of interdomain traffic data. The resulting findings challenge traditional assumptions on the preponderance of congestion control on resource sharing, with over half of all traffic being constrained by limits other than network capacity. All of the above represent concerted attempts to rethink and reassert traffic engineering in an Internet where competing solutions for resource pooling proliferate. By delegating responsibilities currently overloading the routing architecture towards hosts and re-engineering traffic management around the core strengths of the network, the proposed architectural changes allow the tussle surrounding resource pooling to be drawn out without compromising the scalability and evolvability of the Internet

    Voice over IP

    Get PDF
    The area that this thesis covers is Voice over IP (or IP Telephony as it is sometimes called) over Private networks and not over the Internet. There is a distinction to be made between the two even though the term is loosely applied to both. IP Telephony over Private Networks involve calls made over private WANs using IP telephony protocols while IP Telephony over the Internet involve calls made over the public Internet using IP telephony protocols. Since the network is private, service is reliable because the network owner can control how resources are allocated to various applications, such as telephony services. The public Internet on the other hand is a public, largely unmanaged network that offers no reliable service guarantee. Calls placed over the Internet can be low in quality, but given the low price, some find this solution attractive. What started off as an Internet Revolution with free phone calls being offered to the general public using their multimedia computers has turned into a telecommunication revolution where enterprises are beginning to converge their data and voice networks into one network. In retrospect, an enterprise\u27s data networks are being leveraged for telephony. The communication industry has come full circle. Earlier in the decade data was being transmitted over the public voice networks and now voice is just another application which is/will be run over the enterprises existing data networks. We shall see in this thesis the problems that are encountered while sending Voice over Data networks using the underlying IP Protocol and the corrective steps taken by the Industry to resolve these multitudes of issues. Paul M. Zam who is collaborating in this Joint Thesis/project on VoIP will substantiate this theoretical research with his practical findings. On reading this paper the reader will gain an insight in the issues revolving the implementation of VoIP in an enterprises private network as well the technical data, which sheds more light on the same. Thus the premise of this joint thesis/project is to analyze the current status of the technology and present a business case scenario where an organization will be able to use this information

    Application and network traffic correlation of grid applications

    Get PDF
    Dynamic engineering of application-specific network traffic is becoming more important for applications that consume large amounts of network resources, in particular, bandwidth. Since traditional traffic engineering approaches are static they cannot address this trend; hence there is a need for real-time traffic classification to enable dynamic traffic engineering. A packet flow monitor has been developed that operates at full Gigabit Ethernet line rate, reassembling all TCP flows in real-time. The monitor can be used to classify and analyse both plain text and encrypted application traffic. This dissertation shows, under reasonable assumptions, 100% accuracy for the detection of bulk data traffic for applications when control traffic is clear text and also 100% accuracy for encrypted GridFTP file transfers when data channels are authenticated. For non-authenticated GridFTP data channels, 100% accuracy is also achieved, provided the transferred files are tens of megabytes or more in size. The monitor is able to identify bulk flows resulting from clear text control protocols before they begin. Bulk flows resulting from encrypted GridFTP control sessions are identified before the onset of bulk data (with data channel authentication) or within two seconds (without data channel authentication). Finally, the system is able to deliver an event to a local publish/subscribe server within 1 ms of identification within the monitor. Therefore, the event delivery introduces negligible delay in the ability of the network management system to react to the event

    An Introduction to Computer Networks

    Get PDF
    An open textbook for undergraduate and graduate courses on computer networks

    Xarxa mesh privada virtual

    Get PDF
    Aquest projecte ens apropa als conceptes com les xarxes privades virtuals, els serveis de seguretat (xifrar el tràfic, validar la integritat, autentificar els extrems, evitar el repudi i evitar la repetició) i les aplicacions distribuïdes (peer to peer). Avui en dia, la funció de permetre la unió de diferents ordenadors o xarxes locals en una nova xarxa virtual, pot ser aprofitada per poder abstraure’s de les barreres imposades per IPv4 com la limitació d’adreçament públic. El fet d’afegir la component de privacitat permet forçar un entorn segur, de confiança i independent del que puguin aportar les aplicacions. El conjunt de la creació de xarxes virtuals amb la component de privacitat permet la creació de xarxes privades virtuals també anomenades VPNs. L’objectiu d’aquest projecte és dissenyar i implementar una aplicació capaç de crear xarxes privades virtuals que no depenguin de cap servidor central, sense que això comprometi la privacitat ni l’autenticació dels integrants de la xarxa. L’aplicació ha de ser capaç de superar els Routers NAT (que tradueixen les adreces IP permetent compartir una adreça pública entre diferents ordenadors) per tal d’establir connexions bidireccionals directament amb els veïns de la xarxa virtual, proporcionant així una baixa latència. En fer els tests inicials es va trobar un problema relacionat amb la implementació de la llibreria OpenSSL del protocol segur utilitzat. Aquest error es presenta malgrat que aparentment l’aplicació fa un bon ús d’aquesta llibreria. Aquest problema ha consumit molt temps de dedicació del projecte sense poder ser solucionat. Com a resultats dels tests de l’aplicació creada en comparació amb les de les altres aplicacions existents: aquesta realitza una inicialització breu, te una latència baixa juntament amb una desviació estàndard molt baixa i permet taxes de transferència altes en TCP i baixes en UDP. Aquest document comença amb una introducció a les xarxes privades virtuals i al projecte.Seguidament, en el primer capítol s’exposa la descripció i la comparativa de les tecnologies de xarxes privades virtuals existents. En el segon s’explica el funcionament, el disseny i l’arquitectura de l’aplicació creada. En el tercer es presenten els resultats de les proves realitzades amb l’aplicació creada. I finalment hi ha les conclusions, la bibliografia i el glossari

    Routing and interworking protocols for next generation wireless networks

    Get PDF
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore