50 research outputs found

    Generalizing Negative Imaginary Systems Theory to Include Free Body Dynamics: Control of Highly Resonant Structures with Free Body Motion

    Full text link
    Negative imaginary (NI) systems play an important role in the robust control of highly resonant flexible structures. In this paper, a generalized NI system framework is presented. A new NI system definition is given, which allows for flexible structure systems with colocated force actuators and position sensors, and with free body motion. This definition extends the existing definitions of NI systems. Also, necessary and sufficient conditions are provided for the stability of positive feedback control systems where the plant is NI according to the new definition and the controller is strictly negative imaginary. The stability conditions in this paper are given purely in terms of properties of the plant and controller transfer function matrices, although the proofs rely on state space techniques. Furthermore, the stability conditions given are independent of the plant and controller system order. As an application of these results, a case study involving the control of a flexible robotic arm with a piezo-electric actuator and sensor is presented

    Robust cooperative control of multiple heterogeneous negative-imaginary systems

    Get PDF

    Lagrange Stabilization of Pendulum-like Systems: A Pseudo H-infinity Control Approach

    Full text link
    This paper studies the Lagrange stabilization of a class of nonlinear systems whose linear part has a singular system matrix and which have multiple periodic (in state) nonlinearities. Both state and output feedback Lagrange stabilization problems are considered. The paper develops a pseudo H-infinity control theory to solve these stabilization problems. In a similar fashion to the Strict Bounded Real Lemma in classic H-infinity control theory, a Pseudo Strict Bounded Real Lemma is established for systems with a single unstable pole. Sufficient conditions for the synthesis of state feedback and output feedback controllers are given to ensure that the closed-loop system is pseudo strict bounded real. The pseudo H-infinity control approach is applied to solve state feedback and output feedback Lagrange stabilization problems for nonlinear systems with multiple nonlinearities. An example is given to illustrate the proposed method

    New Results on Negative Imaginary Systems Theory with Application to Flexible Structures and Nano-Positioning

    Full text link
    Flexible structure systems arise in many important applications such as ground and aerospace vehicles, atomic force microscopes, rotating flexible spacecraft, rotary cranes, robotics and flexible link manipulators, hard disk drives and other nano-positioning systems. In control systems design for these flexible systems, it is important to consider the effect of highly resonant modes. Such resonant modes are known to adversely affect the stability and performance of flexible structure control systems, and are often very sensitive to changes in environmental variables. These can lead to vibrational effects which limit the ability of control systems in achieving desired levels of performance. These problems are simplified to some extend by using force actuators combined with colocated measurements of velocity, position, or acceleration. Using force actuators combined with colocated measurements of velocity can be studied using positive real systems theory, which has received a great attention since 1962. Using force actuators combined with colocated measurements of position and acceleration can be studied using negative imaginary (NI) systems theory. In this thesis, we provide a generalization and development of negative imaginary systems theory to include a wider class of systems. In the generalization of NI systems theory, we provide a new negative imaginary definition that allows for flexible systems with free body motion. Also, we provide a new stability condition for a positive feedback control system where the plant is NI according to the new definition and the controller is strictly negative imaginary (SNI). This general stability result captures all previous NI stability results which have been developed. This thesis also presents analytical tools for negative imaginary systems theory, which can be useful in the practical applications of the theory. Two methods that can be used for checking the negative imaginary property for a given system are presented. Also, methods for enforcing NI dynamics on mathematical system models to satisfy an NI Property are explored. A systematic method to design controllers for NI systems with guaranteed robust stability also is presented. A practical application of control system design for a three-mirror cavity locking system is presented in the end of the thesis
    corecore