8,000 research outputs found

    Energy Efficient Estimation of Gaussian Sources Over Inhomogeneous Gaussian MAC Channels

    Full text link
    It has been shown lately the optimality of uncoded transmission in estimating Gaussian sources over homogeneous/symmetric Gaussian multiple access channels (MAC) using multiple sensors. It remains, however, unclear whether it still holds for any arbitrary networks and/or with high channel signal-to-noise ratio (SNR) and high signal-to-measurement-noise ratio (SMNR). In this paper, we first provide a joint source and channel coding approach in estimating Gaussian sources over Gaussian MAC channels, as well as its sufficient and necessary condition in restoring Gaussian sources with a prescribed distortion value. An interesting relationship between our proposed joint approach with a more straightforward separate source and channel coding scheme is then established. We then formulate constrained power minimization problems and transform them to relaxed convex geometric programming problems, whose numerical results exhibit that either separate or uncoded scheme becomes dominant over a linear topology network. In addition, we prove that the optimal decoding order to minimize the total transmission powers for both source and channel coding parts is solely subject to the ranking of MAC channel qualities, and has nothing to do with the ranking of measurement qualities. Finally, asymptotic results for homogeneous networks are obtained which not only confirm the existing optimality of the uncoded approach, but also show that the asymptotic SNR exponents of these three approaches are all the same. Moreover, the proposed joint approach share the same asymptotic ratio with respect to high SNR and high SMNR as the uncoded scheme

    Suboptimality of the Karhunen-LoĂšve transform for transform coding

    Get PDF
    We examine the performance of the Karhunen-Loeve transform (KLT) for transform coding applications. The KLT has long been viewed as the best available block transform for a system that orthogonally transforms a vector source, scalar quantizes the components of the transformed vector using optimal bit allocation, and then inverse transforms the vector. This paper treats fixed-rate and variable-rate transform codes of non-Gaussian sources. The fixed-rate approach uses an optimal fixed-rate scalar quantizer to describe the transform coefficients; the variable-rate approach uses a uniform scalar quantizer followed by an optimal entropy code, and each quantized component is encoded separately. Earlier work shows that for the variable-rate case there exist sources on which the KLT is not unique and the optimal quantization and coding stage matched to a "worst" KLT yields performance as much as 1.5 dB worse than the optimal quantization and coding stage matched to a "best" KLT. In this paper, we strengthen that result to show that in both the fixed-rate and the variable-rate coding frameworks there exist sources for which the performance penalty for using a "worst" KLT can be made arbitrarily large. Further, we demonstrate in both frameworks that there exist sources for which even a best KLT gives suboptimal performance. Finally, we show that even for vector sources where the KLT yields independent coefficients, the KLT can be suboptimal for fixed-rate coding

    Joint Unitary Triangularization for MIMO Networks

    Full text link
    This work considers communication networks where individual links can be described as MIMO channels. Unlike orthogonal modulation methods (such as the singular-value decomposition), we allow interference between sub-channels, which can be removed by the receivers via successive cancellation. The degrees of freedom earned by this relaxation are used for obtaining a basis which is simultaneously good for more than one link. Specifically, we derive necessary and sufficient conditions for shaping the ratio vector of sub-channel gains of two broadcast-channel receivers. We then apply this to two scenarios: First, in digital multicasting we present a practical capacity-achieving scheme which only uses scalar codes and linear processing. Then, we consider the joint source-channel problem of transmitting a Gaussian source over a two-user MIMO channel, where we show the existence of non-trivial cases, where the optimal distortion pair (which for high signal-to-noise ratios equals the optimal point-to-point distortions of the individual users) may be achieved by employing a hybrid digital-analog scheme over the induced equivalent channel. These scenarios demonstrate the advantage of choosing a modulation basis based upon multiple links in the network, thus we coin the approach "network modulation".Comment: Submitted to IEEE Tran. Signal Processing. Revised versio

    Universal lossless source coding with the Burrows Wheeler transform

    Get PDF
    The Burrows Wheeler transform (1994) is a reversible sequence transformation used in a variety of practical lossless source-coding algorithms. In each, the BWT is followed by a lossless source code that attempts to exploit the natural ordering of the BWT coefficients. BWT-based compression schemes are widely touted as low-complexity algorithms giving lossless coding rates better than those of the Ziv-Lempel codes (commonly known as LZ'77 and LZ'78) and almost as good as those achieved by prediction by partial matching (PPM) algorithms. To date, the coding performance claims have been made primarily on the basis of experimental results. This work gives a theoretical evaluation of BWT-based coding. The main results of this theoretical evaluation include: (1) statistical characterizations of the BWT output on both finite strings and sequences of length n → ∞, (2) a variety of very simple new techniques for BWT-based lossless source coding, and (3) proofs of the universality and bounds on the rates of convergence of both new and existing BWT-based codes for finite-memory and stationary ergodic sources. The end result is a theoretical justification and validation of the experimentally derived conclusions: BWT-based lossless source codes achieve universal lossless coding performance that converges to the optimal coding performance more quickly than the rate of convergence observed in Ziv-Lempel style codes and, for some BWT-based codes, within a constant factor of the optimal rate of convergence for finite-memory source
    • 

    corecore