185 research outputs found

    A natural sequent calculus for Lewis logic of counterfactuals

    Get PDF

    Standard Sequent Calculi for Lewis' Logics of Counterfactuals

    Get PDF

    Frontiers of Conditional Logic

    Full text link
    Conditional logics were originally developed for the purpose of modeling intuitively correct modes of reasoning involving conditional—especially counterfactual—expressions in natural language. While the debate over the logic of conditionals is as old as propositional logic, it was the development of worlds semantics for modal logic in the past century that catalyzed the rapid maturation of the field. Moreover, like modal logic, conditional logic has subsequently found a wide array of uses, from the traditional (e.g. counterfactuals) to the exotic (e.g. conditional obligation). Despite the close connections between conditional and modal logic, both the technical development and philosophical exploitation of the latter has outstripped that of the former, with the result that noticeable lacunae exist in the literature on conditional logic. My dissertation addresses a number of these underdeveloped frontiers, producing new technical insights and philosophical applications. I contribute to the solution of a problem posed by Priest of finding sound and complete labeled tableaux for systems of conditional logic from Lewis\u27 V-family. To develop these tableaux, I draw on previous work on labeled tableaux for modal and conditional logic; errors and shortcomings in recent work on this problem are identified and corrected. While modal logic has by now been thoroughly studied in non-classical contexts, e.g. intuitionistic and relevant logic, the literature on conditional logic is still overwhelmingly classical. Another contribution of my dissertation is a thorough analysis of intuitionistic conditional logic, in which I utilize both algebraic and worlds semantics, and investigate how several novel embedding results might shed light on the philosophical interpretation of both intuitionistic logic and conditional logic extensions thereof. My dissertation examines deontic and connexive conditional logic as well as the underappreciated history of connexive notions in the analysis of conditional obligation. The possibility of interpreting deontic modal logics in such systems (via embedding results) serves as an important theoretical guide. A philosophically motivated proscription on impossible obligations is shown to correspond to, and justify, certain (weak) connexive theses. Finally, I contribute to the intensifying debate over counterpossibles, counterfactuals with impossible antecedents, and take—in contrast to Lewis and Williamson—a non-vacuous line. Thus, in my view, a counterpossible like If there had been a counterexample to the law of the excluded middle, Brouwer would not have been vindicated is false, not (vacuously) true, although it has an impossible antecedent. I exploit impossible (non-normal) worlds—originally developed to model non-normal modal logics—to provide non-vacuous semantics for counterpossibles. I buttress the case for non-vacuous semantics by making recourse to both novel technical results and theoretical considerations

    Finding problems in knowledge bases using modal logics

    Get PDF
    In this paper I propose that it is suitable to consider some statements that an expert makes during knowledge elicitation as being statements in a modal logic. This approach gives us several advantages in finding inconsistencies between a knowledge base and an expert's intuition in her field. I illustrate this approach by using the modal logic VC, a logic of counterfactual conditionals. In an appendix, I give brief details of theorem proving in VC

    De Finettian Logics of Indicative Conditionals Part II: Proof Theory and Algebraic Semantics

    Get PDF
    In Part I of this paper, we identified and compared various schemes for trivalent truth conditions for indicative conditionals, most notably the proposals by de Finetti (1936) and Reichenbach (1935, 1944) on the one hand, and by Cooper ( Inquiry , 11 , 295–320, 1968) and Cantwell ( Notre Dame Journal of Formal Logic , 49 , 245–260, 2008) on the other. Here we provide the proof theory for the resulting logics and , using tableau calculi and sequent calculi, and proving soundness and completeness results. Then we turn to the algebraic semantics, where both logics have substantive limitations: allows for algebraic completeness, but not for the construction of a canonical model, while fails the construction of a Lindenbaum-Tarski algebra. With these results in mind, we draw up the balance and sketch future research projects

    Uniform labelled calculi for preferential conditional logics based on neighbourhood semantics

    Get PDF
    International audienceThe preferential conditional logic PCL, introduced by Burgess, and its extensions are studied. First, a natural semantics based on neighbourhood models, which generalise Lewis' sphere models for counterfactual logics, is proposed. Soundness and completeness of PCL and its extensions with respect to this class of models are proved directly. Labelled sequent calculi for all logics of the family are then introduced. The cal-culi are modular and have standard proof-theoretical properties, the most important of which is admissibility of cut, that entails a syntactic proof of completeness of the calculi. By adopting a general strategy, root-first proof search terminates, thereby providing a decision procedure for PCL and its extensions. Finally, the semantic completeness of the calculi is established: from a finite branch in a failed proof attempt it is possible to extract a finite countermodel of the root sequent. The latter result gives a constructive proof of the finite model property of all the logics considered
    • …
    corecore