702 research outputs found

    From Metabolism to Ecology:Cross-Feeding Interactions Shape the Balance between Polymicrobial Conflict and Mutualism

    Get PDF
    Polymicrobial interactions are widespread in nature, and play a major role in maintaining human health and ecosystems. Whenever one organism uses metabolites produced by another organism as energy or nutrient sources, this is called cross-feeding. The ecological outcomes of cross-feeding interactions are poorly understood and potentially diverse: mutualism, competition, exploitation or commensalism. A major reason for this uncertainty is the lack of theoretical approaches linking microbial metabolism to microbial ecology. To address this issue, we explore the dynamics of a one-way interspecific cross-feeding interaction, in which food can be traded for a service (detoxification). Our results show that diverse ecological interactions (competition, mutualism, exploitation) can emerge from this simple cross-feeding interaction, and can be predicted by the metabolic, demographic and environmental parameters that govern the balance of the costs and benefits of association. In particular, our model predicts stronger mutualism for intermediate by-product toxicity because the resource-service exchange is constrained to the service being neither too vital (high toxicity impairs resource provision) nor dispensable (low toxicity reduces need for service). These results support the idea that bridging microbial ecology and metabolism is a critical step towards a better understanding of the factors governing the emergence and dynamics of polymicrobial interactions

    A review of the influence of root-associating fungi and root exudates on the success of invasive plants

    Get PDF
    Plant-fungal interactions are essential for understanding the distribution and abundance of plants species. Recently, arbuscular mycorrhizal fungal (AMF) partners of non-indigenous invasive plants have been hypothesized to be a critical factor influencing the invasion processes. AMF are known to improve nutrient and moisture uptake, as well as disrupt parasitic and pathogenic microbes in the host plant. Such benefits may enable invaders to establish significant and persistent populations in environments previously dominated by natives. Coupling these findings with studies on invader pathogen-disrupting root exudates is not well documented in the literature describing plant invasion strategies. The interaction effects of altered AMF associations and the impact of invader root exudates would be more relevant than understanding the AMF dynamics or the phytochemistry of successful invaders in isolation, particularly given that AMF and root exudates can have a similar role in pathogen control but function quite differently. One means to achieve this goal is to assess these strategies concurrently by characterizing both the general (mostly pathogens or commensals) and AM-specific fungal colonization patterns found in field collected root samples of successful invaders, native plants growing within dense patches of invaders, and native plants growing separately from invaders. In this review I examine the emerging evidence of the ways in which AMF-plant interactions and the production of defensive root exudates provide pathways to invasive plant establishment and expansion, and conclude that interaction studies must be pursued to achieve a more comprehensive understanding of successful plant invasion

    Predator-Dependent Functional Responses Alter the Coexistence and Indirect Effects among Prey that Share a Predator

    Get PDF
    Predator functional responses describe predator feeding rates as a function of prey abundance and are central to pred-ator–prey theory. Despite ample evidence that functional responses also depend on predator abundance, theory incor-porating predator-dependent functional responses has focused almost exclusively on specialist predator–prey pairs or linear food chains. This leaves a large gap in our knowledge as many predators feed on multiple prey, and in so doing, generate indirect effects among prey that can alter their coexistence. Here we investigate how predator-dependent functional responses in a one predator–two prey model alter the coexistence among prey and their net effects on one another. We use two different functional response forms (the Beddington–DeAngelis and Crowley–Martin functional responses) and consider situations in which the prey do not directly interact and in which they directly compete with one another. We find that predator dependence can facilitate, hinder, or have no effect on prey coexistence depending on whether prey compete directly and the role of predation in mediating coexistence among the prey in the absence of predator dependence. We also show that the negative net effects of prey on one another are generally weakened by predator dependence and can become positive under the Crowley–Martin functional response. Together, these results suggest that predator dependence may have widespread effects on ecological communities by altering the coexistence among prey species and the strength and signs of the interactions among them

    Border Collision Bifurcations in the Evolution of Mutualistic Interactions

    Get PDF
    The paper describes the slow evolution of two adaptive traits that regulate the interactions between two mutualistic populations (e.g. a flowering plant and its insect pollinator). For frozen values of the traits, the two populations can either coexist or go extinct. The values of the traits for which populations extinction is guaranteed are therefore of no interest from an evolutionary point of view. In other words, the evolutionary dynamics must be studied only in a viable subset of trait space, which is bounded due to the physiological cost of extreme trait values. Thus, evolutionary dynamics experience so-called border collision bifurcations, when a system invariant in trait space hits the border of the viable subset. The unfolding of standard and border collision bifurcations with respect to two parameters of biological interest is presented. The algebraic and boundary-value problems characterizing the border collision bifurcations are described together with some details concerning their computation

    Endosymbiosis before eukaryotes: mitochondrial establishment in protoeukaryotes

    Get PDF
    Endosymbiosis and organellogenesis are virtually unknown among prokaryotes. The single presumed example is the endosymbiogenetic origin of mitochondria, which is hidden behind the event horizon of the last eukaryotic common ancestor. While eukaryotes are monophyletic, it is unlikely that during billions of years, there were no other prokaryote–prokaryote endosymbioses as symbiosis is extremely common among prokaryotes, e.g., in biofilms. Therefore, it is even more precarious to draw conclusions about potentially existing (or once existing) prokaryotic endosymbioses based on a single example. It is yet unknown if the bacterial endosymbiont was captured by a prokaryote or by a (proto-)eukaryote, and if the process of internalization was parasitic infection, slow engulfment, or phagocytosis. In this review, we accordingly explore multiple mechanisms and processes that could drive the evolution of unicellular microbial symbioses with a special attention to prokaryote–prokaryote interactions and to the mitochondrion, possibly the single prokaryotic endosymbiosis that turned out to be a major evolutionary transition. We investigate the ecology and evolutionary stability of inter-species microbial interactions based on dependence, physical proximity, cost–benefit budget, and the types of benefits, investments, and controls. We identify challenges that had to be conquered for the mitochondrial host to establish a stable eukaryotic lineage. Any assumption about the initial interaction of the mitochondrial ancestor and its contemporary host based solely on their modern relationship is rather perilous. As a result, we warn against assuming an initial mutually beneficial interaction based on modern mitochondria–host cooperation. This assumption is twice fallacious: (i) endosymbioses are known to evolve from exploitative interactions and (ii) cooperativity does not necessarily lead to stable mutualism. We point out that the lack of evidence so far on the evolution of endosymbiosis from mutual syntrophy supports the idea that mitochondria emerged from an exploitative (parasitic or phagotrophic) interaction rather than from syntrophy
    • 

    corecore