305 research outputs found

    Motion and emotion : Semantic knowledge for hollywood film indexing

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Challenges in 3D scanning: Focusing on Ears and Multiple View Stereopsis

    Get PDF

    3D Shape Modeling Using High Level Descriptors

    Get PDF

    Sound Object Recognition

    Get PDF
    Humans are constantly exposed to a variety of acoustic stimuli ranging from music and speech to more complex acoustic scenes like a noisy marketplace. The human auditory perception mechanism is able to analyze these different kinds of sounds and extract meaningful information suggesting that the same processing mechanism is capable of representing different sound classes. In this thesis, we test this hypothesis by proposing a high dimensional sound object representation framework, that captures the various modulations of sound by performing a multi-resolution mapping. We then show that this model is able to capture a wide variety of sound classes (speech, music, soundscapes) by applying it to the tasks of speech recognition, speaker verification, musical instrument recognition and acoustic soundscape recognition. We propose a multi-resolution analysis approach that captures the detailed variations in the spectral characterists as a basis for recognizing sound objects. We then show how such a system can be fine tuned to capture both the message information (speech content) and the messenger information (speaker identity). This system is shown to outperform state-of-art system for noise robustness at both automatic speech recognition and speaker verification tasks. The proposed analysis scheme with the included ability to analyze temporal modulations was used to capture musical sound objects. We showed that using a model of cortical processing, we were able to accurately replicate the human perceptual similarity judgments and also were able to get a good classification performance on a large set of musical instruments. We also show that neither just the spectral feature or the marginals of the proposed model are sufficient to capture human perception. Moreover, we were able to extend this model to continuous musical recordings by proposing a new method to extract notes from the recordings. Complex acoustic scenes like a sports stadium have multiple sources producing sounds at the same time. We show that the proposed representation scheme can not only capture these complex acoustic scenes, but provides a flexible mechanism to adapt to target sources of interest. The human auditory perception system is known to be a complex system where there are both bottom-up analysis pathways and top-down feedback mechanisms. The top-down feedback enhances the output of the bottom-up system to better realize the target sounds. In this thesis we propose an implementation of top-down attention module which is complimentary to the high dimensional acoustic feature extraction mechanism. This attention module is a distributed system operating at multiple stages of representation, effectively acting as a retuning mechanism, that adapts the same system to different tasks. We showed that such an adaptation mechanism is able to tremendously improve the performance of the system at detecting the target source in the presence of various distracting background sources

    Interpretation of Natural-language Robot Instructions: Probabilistic Knowledge Representation, Learning, and Reasoning

    Get PDF
    A robot that can be simply told in natural language what to do -- this has been one of the ultimate long-standing goals in both Artificial Intelligence and Robotics research. In near-future applications, robotic assistants and companions will have to understand and perform commands such as set the table for dinner'', make pancakes for breakfast'', or cut the pizza into 8 pieces.'' Although such instructions are only vaguely formulated, complex sequences of sophisticated and accurate manipulation activities need to be carried out in order to accomplish the respective tasks. The acquisition of knowledge about how to perform these activities from huge collections of natural-language instructions from the Internet has garnered a lot of attention within the last decade. However, natural language is typically massively unspecific, incomplete, ambiguous and vague and thus requires powerful means for interpretation. This work presents PRAC -- Probabilistic Action Cores -- an interpreter for natural-language instructions which is able to resolve vagueness and ambiguity in natural language and infer missing information pieces that are required to render an instruction executable by a robot. To this end, PRAC formulates the problem of instruction interpretation as a reasoning problem in first-order probabilistic knowledge bases. In particular, the system uses Markov logic networks as a carrier formalism for encoding uncertain knowledge. A novel framework for reasoning about unmodeled symbolic concepts is introduced, which incorporates ontological knowledge from taxonomies and exploits semantically similar relational structures in a domain of discourse. The resulting reasoning framework thus enables more compact representations of knowledge and exhibits strong generalization performance when being learnt from very sparse data. Furthermore, a novel approach for completing directives is presented, which applies semantic analogical reasoning to transfer knowledge collected from thousands of natural-language instruction sheets to new situations. In addition, a cohesive processing pipeline is described that transforms vague and incomplete task formulations into sequences of formally specified robot plans. The system is connected to a plan executive that is able to execute the computed plans in a simulator. Experiments conducted in a publicly accessible, browser-based web interface showcase that PRAC is capable of closing the loop from natural-language instructions to their execution by a robot

    Bayesian super-resolution with application to radar target recognition

    Get PDF
    This thesis is concerned with methods to facilitate automatic target recognition using images generated from a group of associated radar systems. Target recognition algorithms require access to a database of previously recorded or synthesized radar images for the targets of interest, or a database of features based on those images. However, the resolution of a new image acquired under non-ideal conditions may not be as good as that of the images used to generate the database. Therefore it is proposed to use super-resolution techniques to match the resolution of new images with the resolution of database images. A comprehensive review of the literature is given for super-resolution when used either on its own, or in conjunction with target recognition. A new superresolution algorithm is developed that is based on numerical Markov chain Monte Carlo Bayesian statistics. This algorithm allows uncertainty in the superresolved image to be taken into account in the target recognition process. It is shown that the Bayesian approach improves the probability of correct target classification over standard super-resolution techniques. The new super-resolution algorithm is demonstrated using a simple synthetically generated data set and is compared to other similar algorithms. A variety of effects that degrade super-resolution performance, such as defocus, are analyzed and techniques to compensate for these are presented. Performance of the super-resolution algorithm is then tested as part of a Bayesian target recognition framework using measured radar data

    Proceedings of the Detection and Classification of Acoustic Scenes and Events 2016 Workshop (DCASE2016)

    Get PDF

    Rehabilitation Engineering

    Get PDF
    Population ageing has major consequences and implications in all areas of our daily life as well as other important aspects, such as economic growth, savings, investment and consumption, labour markets, pensions, property and care from one generation to another. Additionally, health and related care, family composition and life-style, housing and migration are also affected. Given the rapid increase in the aging of the population and the further increase that is expected in the coming years, an important problem that has to be faced is the corresponding increase in chronic illness, disabilities, and loss of functional independence endemic to the elderly (WHO 2008). For this reason, novel methods of rehabilitation and care management are urgently needed. This book covers many rehabilitation support systems and robots developed for upper limbs, lower limbs as well as visually impaired condition. Other than upper limbs, the lower limb research works are also discussed like motorized foot rest for electric powered wheelchair and standing assistance device
    corecore