174 research outputs found

    System Identification of Bipedal Locomotion in Robots and Humans

    Get PDF
    The ability to perform a healthy walking gait can be altered in numerous cases due to gait disorder related pathologies. The latter could lead to partial or complete mobility loss, which affects the patients’ quality of life. Wearable exoskeletons and active prosthetics have been considered as a key component to remedy this mobility loss. The control of such devices knows numerous challenges that are yet to be addressed. As opposed to fixed trajectories control, real-time adaptive reference generation control is likely to provide the wearer with more intent control over the powered device. We propose a novel gait pattern generator for the control of such devices, taking advantage of the inter-joint coordination in the human gait. Our proposed method puts the user in the control loop as it maps the motion of healthy limbs to that of the affected one. To design such control strategy, it is critical to understand the dynamics behind bipedal walking. We begin by studying the simple compass gait walker. We examine the well-known Virtual Constraints method of controlling bipedal robots in the image of the compass gait. In addition, we provide both the mechanical and control design of an affordable research platform for bipedal dynamic walking. We then extend the concept of virtual constraints to human locomotion, where we investigate the accuracy of predicting lower limb joints angular position and velocity from the motion of the other limbs. Data from nine healthy subjects performing specific locomotion tasks were collected and are made available online. A successful prediction of the hip, knee, and ankle joints was achieved in different scenarios. It was also found that the motion of the cane alone has sufficient information to help predict good trajectories for the lower limb in stairs ascent. Better estimates were obtained using additional information from arm joints. We also explored the prediction of knee and ankle trajectories from the motion of the hip joints

    Musculoskeletal Modeling of the Human Lower Limb Stiffness for Robotic Applications

    Get PDF
    This research work presents a physiologically accurate and novel computationally fast neuromusculoskeletal model of the human lower limb stiffness. The proposed computational framework uses electromyographic signals, motion capture data and ground reaction forces to predict the force developed by 43 musculotendon actuators. The estimated forces are then used to compute the musculotendon stiffness and the corresponding joint stiffness. The estimations at each musculotendon unit is constrained to simultaneously satisfy the joint angles and the joint moments of force generated with respect to five degrees of freedom, including: Hip Adduction-Abduction, Hip Flexion-Extension, Hip Internal-External Rotation, Knee Flexion-Extension, and Ankle Plantar-Dorsi Flexion. Advanced methods are used to perform accurate muscle-driven dynamic simulations and to guarantee the dynamic consistency between kinematic and kinetic data. This study presents also the design, simulation and prototyping of a small musculoskeletal humanoid made for replicating the human musculoskeletal structure in an artificial apparatus capable to maintain a quiet standing position using only a completely passive elastic actuation structure. The proposed prototype has a total mass of about 2 kg and its height is 40 cm. It comprises of four segments for each leg and six degrees of freedom, including: Hip Adduction-Abduction, Hip Flexion-Extension, Knee Flexion-Extension, Ankle Plantar-Dorsi Flexion, Ankle Inversion-Eversion, and Toe Flexion-Extension. In order to reconstruct the continuous state space parameters proper of the assembly's control of quiet standing, a hybrid non-linear Extended Kalman Filter based technique is proposed to combine a base-excited inverted pendulum kinematic model of the robot with the discrete-time position measurements. This research work provides effective solutions and readily available software tools to improve the human interaction with robotic assistive devices, advancing the research in neuromusculoskeletal modeling to better understand the mechanisms of actuation provided by human muscles and the rules that govern the lower limb joint stiffness regulation. The obtained results suggest that the neuromusculoskeletal modeling technology can be exploited to address the challenges on the development of musculoskeletal humanoids, new generation human-robot interfaces, motion control algorithms, and intelligent assistive wearable devices capable to effectively ensure a proper dynamic coupling between human and robot

    Bioinspired template-based control of legged locomotion

    Get PDF
    cient and robust locomotion is a crucial condition for the more extensive use of legged robots in real world applications. In that respect, robots can learn from animals, if the principles underlying locomotion in biological legged systems can be transferred to their artificial counterparts. However, legged locomotion in biological systems is a complex and not fully understood problem. A great progress to simplify understanding locomotion dynamics and control was made by introducing simple models, coined ``templates'', able to represent the overall dynamics of animal (including human) gaits. One of the most recognized models is the spring-loaded inverted pendulum (SLIP) which consists of a point mass atop a massless spring. This model provides a good description of human gaits, such as walking, hopping and running. Despite its high level of abstraction, it supported and inspired the development of successful legged robots and was used as explicit targets for control, over the years. Inspired from template models explaining biological locomotory systems and Raibert's pioneering legged robots, locomotion can be realized by basic subfunctions: (i) stance leg function, (ii) leg swinging and (iii) balancing. Combinations of these three subfunctions can generate different gaits with diverse properties. Using the template models, we investigate how locomotor subfunctions contribute to stabilize different gaits (hopping, running and walking) in different conditions (e.g., speeds). We show that such basic analysis on human locomotion using conceptual models can result in developing new methods in design and control of legged systems like humanoid robots and assistive devices (exoskeletons, orthoses and prostheses). This thesis comprises research in different disciplines: biomechanics, robotics and control. These disciplines are required to do human experiments and data analysis, modeling of locomotory systems, and implementation on robots and an exoskeleton. We benefited from facilities and experiments performed in the Lauflabor locomotion laboratory. Modeling includes two categories: conceptual (template-based, e.g. SLIP) models and detailed models (with segmented legs, masses/inertias). Using the BioBiped series of robots (and the detailed BioBiped MBS models; MBS stands for Multi-Body-System), we have implemented newly-developed design and control methods related to the concept of locomotor subfunctions on either MBS models or on the robot directly. In addition, with involvement in BALANCE project (\url{http://balance-fp7.eu/}), we implemented balance-related control approaches on an exoskeleton to demonstrate their performance in human walking. The outcomes of this research includes developing new conceptual models of legged locomotion, analysis of human locomotion based on the newly developed models following the locomotor subfunction trilogy, developing methods to benefit from the models in design and control of robots and exoskeletons. The main contribution of this work is providing a novel approach for modular control of legged locomotion. With this approach we can identify the relation between different locomotor subfunctions e.g., between balance and stance (using stance force for tuning balance control) or balance and swing (two joint hip muscles can support the swing leg control relating it to the upper body posture) and implement the concept of modular control based on locomotor subfunctions with a limited exchange of sensory information on several hardware platforms (legged robots, exoskeleton)
    • …
    corecore