913 research outputs found

    Analytical methods and experimental approaches for electrophysiological studies of brain oscillations

    Get PDF
    Brain oscillations are increasingly the subject of electrophysiological studies probing their role in the functioning and dysfunction of the human brain. In recent years this research area has seen rapid and significant changes in the experimental approaches and analysis methods. This article reviews these developments and provides a structured overview of experimental approaches, spectral analysis techniques and methods to establish relationships between brain oscillations and behaviour

    The spectro-contextual encoding and retrieval theory of episodic memory.

    Get PDF
    The spectral fingerprint hypothesis, which posits that different frequencies of oscillations underlie different cognitive operations, provides one account for how interactions between brain regions support perceptual and attentive processes (Siegel etal., 2012). Here, we explore and extend this idea to the domain of human episodic memory encoding and retrieval. Incorporating findings from the synaptic to cognitive levels of organization, we argue that spectrally precise cross-frequency coupling and phase-synchronization promote the formation of hippocampal-neocortical cell assemblies that form the basis for episodic memory. We suggest that both cell assembly firing patterns as well as the global pattern of brain oscillatory activity within hippocampal-neocortical networks represents the contents of a particular memory. Drawing upon the ideas of context reinstatement and multiple trace theory, we argue that memory retrieval is driven by internal and/or external factors which recreate these frequency-specific oscillatory patterns which occur during episodic encoding. These ideas are synthesized into a novel model of episodic memory (the spectro-contextual encoding and retrieval theory, or "SCERT") that provides several testable predictions for future research

    It's about Time

    Get PDF
    The purpose of this review/opinion paper is to argue that human cognitive neuroscience has focused too little attention on how the brain may use time and time-based coding schemes to represent, process, and transfer information within and across brain regions. Instead, the majority of cognitive neuroscience studies rest on the assumption of functional localization. Although the functional localization approach has brought us a long way towards a basic characterization of brain functional organization, there are methodological and theoretical limitations of this approach. Further advances in our understanding of neurocognitive function may come from examining how the brain performs computations and forms transient functional neural networks using the rich multi-dimensional information available in time. This approach rests on the assumption that information is coded precisely in time but distributed in space; therefore, measures of rapid neuroelectrophysiological dynamics may provide insights into brain function that cannot be revealed using localization-based approaches and assumptions. Space is not an irrelevant dimension for brain organization; rather, a more complete understanding of how brain dynamics lead to behavior dynamics must incorporate how the brain uses time-based coding and processing schemes

    Spatiotemporal dynamics of single-letter reading: a combined ERP-FMRI study

    Get PDF
    This work investigates the neural correlates of single-letter reading by combining event-related potentials (ERPs) and functional magnetic resonance imaging (fMRI), thus exploiting their complementary spatiotemporal resolutions. Three externally-paced reading tasks were administered with an event-related design: passive observation of letters and symbols and active reading aloud of letters. ERP and fMRI data were separately recorded from 8 healthy adults during the same experimental conditions. Due to the presence of artifacts in the EEG signals, two subjects were discarded from further analysis. Independent Component Analysis was applied to ERPs, after dimensionality reduction by Principal Component Analysis: some independent components were clearly related to specific reading functions and the associated current density distributions in the brain were estimated with Low Resolution Electromagnetic Tomography Analysis method (LORETA). The impulse hemodynamic response function was modeled as a linear combination of linear B-spline functions and fMRI statistical analysis was performed by multiple linear regression. fMRI and LORETA maps were superimposed in order to identify the overlapping activations and the activated regions specifically revealed by each modality. The results showed the existence of neuronal networks functionally specific for letter processing and for explicit verbal-motor articulation, including the temporo-parietal and frontal regions. Overlap between fMRI and LORETA results was observed in the inferior temporal-middle occipital gyrus, suggesting that this area has a crucial and multifunctional role for linguistic and reading processes, likely because its spatial location and strong interconnection with the main visual and auditory sensory systems may have favored its specialization in grapheme-phoneme matching

    Hand eye coordination in surgery

    Get PDF
    The coordination of the hand in response to visual target selection has always been regarded as an essential quality in a range of professional activities. This quality has thus far been elusive to objective scientific measurements, and is usually engulfed in the overall performance of the individuals. Parallels can be drawn to surgery, especially Minimally Invasive Surgery (MIS), where the physical constraints imposed by the arrangements of the instruments and visualisation methods require certain coordination skills that are unprecedented. With the current paradigm shift towards early specialisation in surgical training and shortened focused training time, selection process should identify trainees with the highest potentials in certain specific skills. Although significant effort has been made in objective assessment of surgical skills, it is only currently possible to measure surgeons’ abilities at the time of assessment. It has been particularly difficult to quantify specific details of hand-eye coordination and assess innate ability of future skills development. The purpose of this thesis is to examine hand-eye coordination in laboratory-based simulations, with a particular emphasis on details that are important to MIS. In order to understand the challenges of visuomotor coordination, movement trajectory errors have been used to provide an insight into the innate coordinate mapping of the brain. In MIS, novel spatial transformations, due to a combination of distorted endoscopic image projections and the “fulcrum” effect of the instruments, accentuate movement generation errors. Obvious differences in the quality of movement trajectories have been observed between novices and experts in MIS, however, this is difficult to measure quantitatively. A Hidden Markov Model (HMM) is used in this thesis to reveal the underlying characteristic movement details of a particular MIS manoeuvre and how such features are exaggerated by the introduction of rotation in the endoscopic camera. The proposed method has demonstrated the feasibility of measuring movement trajectory quality by machine learning techniques without prior arbitrary classification of expertise. Experimental results have highlighted these changes in novice laparoscopic surgeons, even after a short period of training. The intricate relationship between the hands and the eyes changes when learning a skilled visuomotor task has been previously studied. Reactive eye movement, when visual input is used primarily as a feedback mechanism for error correction, implies difficulties in hand-eye coordination. As the brain learns to adapt to this new coordinate map, eye movements then become predictive of the action generated. The concept of measuring this spatiotemporal relationship is introduced as a measure of hand-eye coordination in MIS, by comparing the Target Distance Function (TDF) between the eye fixation and the instrument tip position on the laparoscopic screen. Further validation of this concept using high fidelity experimental tasks is presented, where higher cognitive influence and multiple target selection increase the complexity of the data analysis. To this end, Granger-causality is presented as a measure of the predictability of the instrument movement with the eye fixation pattern. Partial Directed Coherence (PDC), a frequency-domain variation of Granger-causality, is used for the first time to measure hand-eye coordination. Experimental results are used to establish the strengths and potential pitfalls of the technique. To further enhance the accuracy of this measurement, a modified Jensen-Shannon Divergence (JSD) measure has been developed for enhancing the signal matching algorithm and trajectory segmentations. The proposed framework incorporates high frequency noise filtering, which represents non-purposeful hand and eye movements. The accuracy of the technique has been demonstrated by quantitative measurement of multiple laparoscopic tasks by expert and novice surgeons. Experimental results supporting visual search behavioural theory are presented, as this underpins the target selection process immediately prior to visual motor action generation. The effects of specialisation and experience on visual search patterns are also examined. Finally, pilot results from functional brain imaging are presented, where the Posterior Parietal Cortical (PPC) activation is measured using optical spectroscopy techniques. PPC has been demonstrated to involve in the calculation of the coordinate transformations between the visual and motor systems, which establishes the possibilities of exciting future studies in hand-eye coordination
    corecore