1,330 research outputs found

    Cartesian path control of a two-degree-of-freedom robot manipulator

    Get PDF
    The problem of cartesian trajectory control of a closed-kinematic chain mechanism robot manipulator with possible space station applications is considered. The study was performed by both computer simulation and experimentation for tracking of three different paths: a straight line, a sinusoid and a circle. Linearization and pole placement methods are employed to design controller gains. Results show that the controllers are robust and there are good agreements between simulation and experimentation. Excellent tracking quality and small overshoots are also evident

    Survey of robust control for rigid robots

    Get PDF
    Current approaches to the robust control of the motion of rigid robots are surveyed, and the available literature is summarized. The five major design approaches discussed are the linear-multivariable approach, the passivity approach, the variable-structure approach, the saturation approach, and the robust-adaptive approach. Some guidelines for choosing a method are offered

    Method and apparatus for adaptive force and position control of manipulators

    Get PDF
    The described and improved multi-arm invention of this application presents three strategies for adaptive control of cooperative multi-arm robots which coordinate control over a common load. In the position-position control strategy, the adaptive controllers ensure that the end-effector positions of both arms track desired trajectories in Cartesian space despite unknown time-varying interaction forces exerted through a load. In the position-hybrid control strategy, the adaptive controller of one arm controls end-effector motions in the free directions and applied forces in the constraint directions; while the adaptive controller of the other arm ensures that the end-effector tracks desired position trajectories. In the hybrid-hybrid control strategy, the adaptive controllers ensure that both end-effectors track reference position trajectories while simultaneously applying desired forces on the load. In all three control strategies, the cross-coupling effects between the arms are treated as disturbances which are compensated for by the adaptive controllers while following desired commands in a common frame of reference. The adaptive controllers do not require the complex mathematical model of the arm dynamics or any knowledge of the arm dynamic parameters or the load parameters such as mass and stiffness. Circuits in the adaptive feedback and feedforward controllers are varied by novel adaptation laws

    Global Saturated Regulator with Variable Gains for Robot Manipulators

    Get PDF
    In this paper, we propose a set of saturated controllers with variable gains to solve the regulation problem for robot manipulators in joint space. These control schemes deliver torques inside the prescribed limits of servomotors. The gamma of variable gains is formed by continuous, smooth, and differentiable functions of the joint position error and velocity of the manipulator. A strict Lyapunov function is proposed to demonstrate globally asymptotic stability of the closed-loop equilibrium point. Finally, the functionality and performance of the proposal are illustrated via simulation results and comparative analysis against Proportional-Derivative (PD) control scheme on a two-degrees-freedom direct-drive robot manipulator
    corecore