371 research outputs found

    A fuzzy multi-objective class based storage location assignment

    Get PDF
    The required storage space and the material handing cost in a warehouse hinge on the storage implementation decision. Effects of storage area reduction on order picking and storage space cost are incorporated. Moreover, merchandises which are in the same shape and can be stored beside each other easily or goods that don't cause any danger like causing a fire if be in touch with each other, can be stored in one class together. In this paper first a multi-objective class based storage model is presented in which two objectives are considered; one is the sum of storage space cost and handing cost and the other is the quantitative objective "efficiency of storing products in one class". The demand rates and the second objective are evaluated with linguistic values. Fuzzy dynamic approach will be used to solve the proposed model considering an illustrative example to clarify it

    Warehouse Operations Revisted: Novel Challenges and Methods

    Get PDF
    Vis, I.F.A. [Promotor]Boter, J. [Promotor

    Sequencing and Routing in a Large Warehouse with High Degree of Product Rotation

    Get PDF
    The paper deals with a sequencing and routing problem originated by a real-world application context. The problem consists in defining the best sequence of locations to visit within a warehouse for the storage and/or retrieval of a given set of items during a specified time horizon, where the storage/retrieval location of an item is given. Picking and put away of items are simultaneously addressed, by also considering some specific requirements given by the layout design and operating policies which are typical in the kind of warehouses under study. Specifically, the considered sequencing policy prescribes that storage locations must be replenished or emptied one at a time by following a specified order of precedence. Moreover, two fleet of vehicles are used to perform retrieving and storing operations, whose routing is restricted to disjoint areas of the warehouse. We model the problem as a constrained multicommodity flow problem on a space-time network, and we propose a Mixed-Integer Linear Programming formulation, whose primary goal is to minimize the time traveled by the vehicles during the time horizon. Since large-size realistic instances are hardly solvable within the time limit commonly imposed in the considered application context, a matheuristic approach based on a time horizon decomposition is proposed. Finally, we provide an extensive experimental analysis aiming at identifying suitable parameter settings for the proposed approach, and testing the matheuristic on particularly hard realistic scenarios. The computational experiments show the efficacy and the efficiency of the proposed approach

    Integrated Models and Tools for Design and Management of Global Supply Chain

    Get PDF
    In modern and global supply chain, the increasing trend toward product variety, level of service, short delivery delay and response time to consumers, highlight the importance to set and configure smooth and efficient logistic processes and operations. In order to comply such purposes the supply chain management (SCM) theory entails a wide set of models, algorithms, procedure, tools and best practices for the design, the management and control of articulated supply chain networks and logistics nodes. The purpose of this Ph.D. dissertation is going in detail on the principle aspects and concerns of supply chain network and warehousing systems, by proposing and illustrating useful methods, procedures and support-decision tools for the design and management of real instance applications, such those currently face by enterprises. In particular, after a comprehensive literature review of the principal warehousing issues and entities, the manuscript focuses on design top-down procedure for both less-than-unit-load OPS and unit-load storage systems. For both, decision-support software platforms are illustrated as useful tools to address the optimization of the warehousing performances and efficiency metrics. The development of such interfaces enables to test the effectiveness of the proposed hierarchical top-down procedure with huge real case studies, taken by industry applications. Whether the large part of the manuscript deals with micro concerns of warehousing nodes, also macro issues and aspects related to the planning, design, and management of the whole supply chain are enquired and discussed. The integration of macro criticalities, such as the design of the supply chain infrastructure and the placement of the logistic nodes, with micro concerns, such the design of warehousing nodes and the management of material handling, is addressed through the definition of integrated models and procedures, involving the overall supply chain and the whole product life cycle. A new integrated perspective should be applied in study and planning of global supply chains. Each aspect of the reality influences the others. Each product consumed by a customer tells a story, made by activities, transformations, handling, processes, traveling around the world. Each step of this story accounts costs, time, resources exploitation, labor, waste, pollution. The economical and environmental sustainability of the modern global supply chain is the challenge to face

    Dynamic warehouse optimization using predictive analytics.

    Get PDF
    The forward area is a small area of a warehouse with a low picking cost. Two approaches that are investigated for selecting the SKUs of this area and the allocated space are the static and the dynamic approaches. In the case that decisions about the forward area are made periodically (e.g. yearly) and the products\u27 demand patterns are completely ignored, the FRP is static. We developed two heuristics that solve the large discrete assignment, allocation, and sizing problem simultaneously. Replenishing the same product in the same place of the forward area brings about a ``Locked layout of the fast picking area during the planning horizon. By using a dynamic slotting approach, the product pick locations within the warehouse are allowed to change and pick operations can accommodate the variability in the product demand pattern. A dynamic approach can introduce the latest fast movers to the forward area, as an opportunity arises. The primary objective of this dissertation is to formally define the dynamic FRP. One main mission of this research is to define a generic dynamic slotting problem while also demonstrating the strengths of this approach over the static model. Dynamic slotting continuously adjusts the current state of the forward area with real-time decisions in conjunction with demand predictive analytics. Applying different order data with different demand volatility, we show that the dynamic model always outperforms the static model. The benefits attained from the dynamic model over the static model are greater for more volatile warehouses

    Robust Storage Assignment in Unit-Load Warehouses

    Get PDF
    Published version made available in SMU repository with permission of INFORMS, 2014, February 28</p

    Performance evaluation of warehouses with automated storage and retrieval technologies.

    Get PDF
    In this dissertation, we study the performance evaluation of two automated warehouse material handling (MH) technologies - automated storage/retrieval system (AS/RS) and autonomous vehicle storage/retrieval system (AVS/RS). AS/RS is a traditional automated warehouse MH technology and has been used for more than five decades. AVS/RS is a relatively new automated warehouse MH technology and an alternative to AS/RS. There are two possible configurations of AVS/RS: AVS/RS with tier-captive vehicles and AVS/RS with tier-to-tier vehicles. We model the AS/RS and both configurations of the AVS/RS as queueing networks. We analyze and develop approximate algorithms for these network models and use them to estimate performance of the two automated warehouse MH technologies. Chapter 2 contains two parts. The first part is a brief review of existing papers about AS/RS and AVS/RS. The second part is a methodological review of queueing network theory, which serves as a building block for our study. In Chapter 3, we model AS/RSs and AVS/RSs with tier-captive vehicles as open queueing networks (OQNs). We show how to analyze OQNs and estimate related performance measures. We then apply an existing OQN analyzer to compare the two MH technologies and answer various design questions. In Chapter 4 and Chapter 5, we present some efficient algorithms to solve SOQN. We show how to model AVS/RSs with tier-to-tier vehicles as SOQNs and evaluate performance of these designs in Chapter 6. AVS/RS is a relatively new automated warehouse design technology. Hence, there are few efficient analytical tools to evaluate performance measures of this technology. We developed some efficient algorithms based on SOQN to quickly and effectively evaluate performance of AVS/RS. Additionally, we present a tool that helps a warehouse designer during the concepting stage to determine the type of MH technology to use, analyze numerous alternate warehouse configurations and select one of these for final implementation
    • 

    corecore