219 research outputs found

    In-Flight Learning Based Flight Control of an Unmanned Aircraft System

    Get PDF
    Title from PDF of title page viewed June 3, 2019Dissertation advisor: Travis FieldsVitaIncludes bibliographical references (pages 128-137)Thesis (PH.D.)--School of Computing and Engineering. University of Missouri--Kansas City, 2018Unmanned Aerial Vehicles (UAVs) popularity has increased substantially in the last few years. UAVs capabilities continue to improve as a result of advances in battery technology, communication, navigation systems and electronics. Increased popularity has driven researchers to improve UAVs reliability and safety which is reflected by the number of publications and accelerating educational programs interest. UAVs are suited for a wide range of civilian and military applications; however, UAVs currently can not integrate with civilian airspace because of stringent safety requirements. Hence, it is necessary to push the envelope for UAVs design and control so that they can learn from nature and have more self-aware capabilities to improve safety and reliability. This dissertation addresses some challenges involved with flight controller learning based on real-time modeling of UAV. Plenty of UAV applications require different operational capabilities within a composite mission. These capabilities include landing and taking off using short runways, while being able to perform missions that require a high cruise speed i.e. tracking applications. A composite mission also requires the aircraft to be able to hover or operate with low cruise speeds for applications involving stationary moments. All of these different operational modes require a hybrid aircraft design that combines fixed wing aircraft capabilities and Vertical Take-Off and Landing (VTOL) aircraft capabilities. However, extensive resources required for hybrid aircraft design prohibited the discovery of different revolutionary designs. The work presented in this dissertation describes the development of a rapid modeling, prototyping and controller design platform of an unmanned quadrotor aircraft. Three main objectives are investigated: intelligent excitation input design, real-time parameter estimation, and learning control. Real-time estimation of dynamic model parameters is important for control adaptation. However, the aircraft model estimation performance can be severely degraded by an active control system and highly collinear model terms such as those found on a quadrotor unmanned aircraft. Recursive Fourier Transform Regression was applied to estimate parameters of different model forms/structures and using different excitation levels. The generated models are utilized to reconfigure a Nonlinear Dynamic Inversion (NDI) controller considering different testing conditions: normal, failure, and learning flights. Finally,an intelligent input design technique is proposed which enables autonomous identification of the vehicle’s response modal frequencies and emphasizes excitation power accordingly.Introduction -- Literature review -- Real-time closed loop system identification of a Quad-copter -- Flight controller learning based on real-time model estimation of a quadrotor aircraft -- Unmanned aircraft system intelligent system identification experiment design -- Conclusion and future work -- Appendix A. Power spectrum of a multisine signal -- Appendix B. Power spectrum of a multisine signa

    Analog dithering techniques for highly linear and efficient transmitters

    Get PDF
    The current thesis is about investigation of new methods and techniques to be able to utilize the switched mode amplifiers, for linear and efficient applications. Switched mode amplifiers benefit from low overlap between the current and voltage wave forms in their output terminals, but they seriously suffer from nonlinearity. This makes it impossible to use them to amplify non-constant envelope message signals, where very high linearity is expected. In order to do that, dithering techniques are studied and a full linearity analysis approach is developed, by which the linearity performance of the dithered amplifier can be analyzed, based on the dithering level and frequency. The approach was based on orthogonalization of the equivalent nonlinearity and is capable of prediction of both co-channel and adjacent channel nonlinearity metrics, for a Gaussian complex or real input random signal. Behavioral switched mode amplifier models are studied and new models are developed, which can be utilized to predict the nonlinear performance of the dithered power amplifier, including the nonlinear capacitors effects. For HFD application, self-oscillating and asynchronous sigma delta techniques are currently used, as pulse with modulators (PWM), to encode a generic RF message signal, on the duty cycle of an output pulse train. The proposed models and analysis techniques were applied to this architecture in the first phase, and the method was validated with measurement on a prototype sample, realized in 65 nm TSMC CMOS technology. Afterwards, based on the same dithering phenomenon, a new linearization technique was proposed, which linearizes the switched mode class D amplifier, and at the same time can reduce the reactive power loss of the amplifier. This method is based on the dithering of the switched mode amplifier with frequencies lower than the band-pass message signal and is called low frequency dithering (LFD). To test this new technique, two test circuits were realized and the idea was applied to them. Both of the circuits were of the hard nonlinear type (class D) and are integrated CMOS and discrete LDMOS technologies respectively. The idea was successfully tested on both test circuits and all of the linearity metric predictions for a digitally modulated RF signal and a random signal were compared to the measurements. Moreover a search method to find the optimum dither frequency was proposed and validated. Finally, inspired by averaging interpretation of the dithering phenomenon, three new topologies were proposed, which are namely DLM, RF-ADC and area modulation power combining, which are all nonlinear systems linearized with dithering techniques. A new averaging method was developed and used for analysis of a Gilbert cell mixer topology, which resulted in a closed form relationship for the conversion gain, for long channel devices

    Aircraft Dynamic Modeling in Turbulence

    Get PDF
    A method for accurately identifying aircraft dynamic models in turbulence was developed and demonstrated. The method uses orthogonal optimized multisine excitation inputs and an analytic method for enhancing signal-to-noise ratio for dynamic modeling in turbulence. A turbulence metric was developed to accurately characterize the turbulence level using flight measurements. The modeling technique was demonstrated in simulation, then applied to a subscale twin-engine jet transport aircraft in flight. Comparisons of modeling results obtained in turbulent air to results obtained in smooth air were used to demonstrate the effectiveness of the approach

    Optimal control of wave energy systems considering nonlinear Froude–Krylov effects: control-oriented modelling and moment-based control

    Get PDF
    Motivated by the relevance of so-called nonlinear Froude–Krylov (FK) hydrodynamic effects in the accurate dynamical description of wave energy converters (WECs) under controlled conditions, and the apparent lack of a suitable control framework effectively capable of optimally harvesting ocean wave energy in such circumstances, we present, in this paper, an integrated framework to achieve such a control objective, by means of two main contributions. We first propose a data-based, control-oriented, modelling procedure, able to compute a suitable mathematical representation for nonlinear FK effects, fully compatible with state-of-the-art control procedures. Secondly, we propose a moment-based optimal control solution, capable of transcribing the energy-maximising optimal control problem for WECs subject to nonlinear FK effects, by incorporating the corresponding data-based FK model via moment-based theory, with real-time capabilities. We illustrate the application of the proposed framework, including energy absorption performance, by means of a comprehensive case study, comprising both the data-based modelling, and the optimal moment-based control of a heaving point absorber WEC subject to nonlinear FK force

    2008 and 2009 Research and Engineering Annual Report

    Get PDF
    Selected research and technology activities at NASA Dryden Flight Research Center are summarized. These activities exemplify the Center's varied and productive research efforts

    Proceedings. 26. Workshop Computational Intelligence, Dortmund, 24. - 25. November 2016

    Get PDF
    Dieser Tagungsband enthält die Beiträge des 26. Workshops Computational Intelligence. Die Schwerpunkte sind Methoden, Anwendungen und Tools für Fuzzy-Systeme, Künstliche Neuronale Netze, Evolutionäre Algorithmen und Data-Mining-Verfahren sowie der Methodenvergleich anhand von industriellen und Benchmark-Problemen
    corecore