28 research outputs found

    Adaptive asynchronous time-stepping, stopping criteria, and a posteriori error estimates for fixed-stress iterative schemes for coupled poromechanics problems

    Get PDF
    In this paper we develop adaptive iterative coupling schemes for the Biot system modeling coupled poromechanics problems. We particularly consider the space-time formulation of the fixed-stress iterative scheme, in which we first solve the problem of flow over the whole space-time interval, then exploiting the space-time information for solving the mechanics. Two common discretizations of this algorithm are then introduced based on two coupled mixed finite element methods in-space and the backward Euler scheme in-time. Therefrom, adaptive fixed-stress algorithms are build on conforming reconstructions of the pressure and displacement together with equilibrated flux and stresses reconstructions. These ingredients are used to derive a posteriori error estimates for the fixed-stress algorithms, distinguishing the different error components, namely the spatial discretization, the temporal discretization, and the fixed-stress iteration components. Precisely, at the iteration k1k\geq 1 of the adaptive algorithm, we prove that our estimate gives a guaranteed and fully computable upper bound on the energy-type error measuring the difference between the exact and approximate pressure and displacement. These error components are efficiently used to design adaptive asynchronous time-stepping and adaptive stopping criteria for the fixed-stress algorithms. Numerical experiments illustrate the efficiency of our estimates and the performance of the adaptive iterative coupling algorithms

    Efficient solvers for hybridized three-field mixed finite element coupled poromechanics

    Full text link
    We consider a mixed hybrid finite element formulation for coupled poromechanics. A stabilization strategy based on a macro-element approach is advanced to eliminate the spurious pressure modes appearing in undrained/incompressible conditions. The efficient solution of the stabilized mixed hybrid block system is addressed by developing a class of block triangular preconditioners based on a Schur-complement approximation strategy. Robustness, computational efficiency and scalability of the proposed approach are theoretically discussed and tested using challenging benchmark problems on massively parallel architectures

    Cracking and damage from crystallization in pores: Coupled chemo-hydro-mechanics and phase-field modeling

    Get PDF
    Cracking and damage from crystallization of minerals in pores center on a wide range of problems, from weathering and deterioration of structures to storage of CO2 via in situ carbonation. Here we develop a theoretical and computational framework for modeling these crystallization-induced deformation and fracture in fluid-infiltrated porous materials. Conservation laws are formulated for coupled chemo-hydro-mechanical processes in a multiphase material composed of the solid matrix, liquid solution, gas, and crystals. We then derive an expression for the effective stress tensor that is energy-conjugate to the strain rate of a porous material containing crystals growing in pores. This form of effective stress incorporates the excess pore pressure exerted by crystal growth – the crystallization pressure – which has been recognized as the direct cause of deformation and fracture during crystallization in pores. Continuum thermodynamics is further exploited to formalize a constitutive framework for porous media subject to crystal growth. The chemo-hydro-mechanical model is then coupled with a phase-field approach to fracture which enables simulation of complex fractures without explicitly tracking their geometry. For robust and efficient solution of the initial–boundary value problem at hand, we utilize a combination of finite element and finite volume methods and devise a block-partitioned preconditioning strategy. Through numerical examples we demonstrate the capability of the proposed modeling frameworkfor simulating complex interactions among unsaturated flow, crystallization kinetics, and cracking in the solid matrix

    Development of robust and efficient solution strategies for coupled problems

    Get PDF
    Det er mange modeller i moderne vitenskap hvor sammenkoblingen mellom forskjellige fysiske prosesser er svært viktig. Disse finner man for eksempel i forbindelse med lagring av karbondioksid i undervannsreservoarer, flyt i kroppsvev, kreftsvulstvekst og geotermisk energiutvinning. Denne avhandlingen har to fokusområder som er knyttet til sammenkoblede modeller. Det første er å utvikle pålitelige og effektive tilnærmingsmetoder, og det andre er utviklingen av en ny modell som tar for seg flyt i et porøst medium som består av to forskjellige materialer. For tilnærmingsmetodene har det vært et spesielt fokus på splittemetoder. Dette er metoder hvor hver av de sammenkoblede modellene håndteres separat, og så itererer man mellom dem. Dette gjøres i hovedsak fordi man kan utnytte tilgjengelig teori og programvare for å løse hver undermodell svært effektivt. Ulempen er at man kan ende opp med løsningsalgoritmer for den sammenkoblede modellen som er trege, eller ikke kommer frem til noen løsning i det hele tatt. I denne avhandlingen har tre forskjellige metoder for å forbedre splittemetoder blitt utviklet for tre forskjellige sammenkoblede modeller. Den første modellen beskriver flyt gjennom deformerbart porøst medium og er kjent som Biot ligningene. For å anvende en splittemetode på denne modellen har et stabiliseringsledd blitt tilført. Dette sikrer at metoden konvergerer (kommer frem til en løsning), men dersom man ikke skalerer stabiliseringsleddet riktig kan det ta veldig lang tid. Derfor har et intervall hvor den optimale skaleringen av stabiliseringsleddet befinner seg blitt identifisert, og utfra dette presenteres det en måte å praktisk velge den riktige skaleringen på. Den andre modellen er en fasefeltmodell for sprekkpropagering. Denne modellen løses vanligvis med en splittemetode som er veldig treg, men konvergent. For å forbedre dette har en ny akselerasjonsmetode har blitt utviklet. Denne anvendes som et postprosesseringssteg til den klassiske splittemetoden, og utnytter både overrelaksering og Anderson akselerasjon. Disse to forskjellige akselerasjonsmetodene har kompatible styrker i at overrelaksering akselererer når man er langt fra løsningen (som er tilfellet når sprekken propagerer), og Anderson akselerasjon fungerer bra når man er nærme løsningen. For å veksle mellom de to metodene har et kriterium basert på residualfeilen blitt brukt. Resultatet er en pålitelig akselerasjonsmetode som alltid akselererer og ofte er svært effektiv. Det siste modellen kalles Cahn-Larché ligningene og er også en fasefeltmodell, men denne beskriver elastisitet i et medium bestående av to elastiske materialer som kan bevege seg basert på overflatespenningen mellom dem. Dette problemet er spesielt utfordrende å løse da det verken er lineært eller konvekst. For å håndtere dette har en ny måte å behandle tidsavhengigheten til det underliggende koblede problemet på blitt utviklet. Dette leder til et diskret system som er ekvivalent med et konvekst minimeringsproblem, som derfor er velegnet til å løses med de fleste numeriske optimeringsmetoder, også splittemetoder. Den nye modellen som har blitt utviklet er en utvidelse av Cahn-Larché ligningene og har fått navnet Cahn-Hilliard-Biot. Dette er fordi ligningene utgjør en fasefelt modell som beskriver flyt i et deformerbart porøst medium med to poroelastiske materialer. Disse kan forflytte seg basert på overflatespenning, elastisk spenning, og poretrykk, og det er tenkt at modellen kan anvendes i forbindelse med kreftsvulstmodellering.There are many applications where the study of coupled physical processes is of great importance. These range from the life sciences with flow in deformable human tissue to structural engineering with fracture propagation in elastic solids. In this doctoral dissertation, there is a twofold focus on coupled problems. Firstly, robust and efficient solution strategies, with a focus on iterative decoupling methods, have been applied to several coupled systems of equations. Secondly, a new thermodynamically consistent coupled system of equations is proposed. Solution strategies are developed for three different coupled problems; the quasi-static linearized Biot equations that couples flow through porous materials and elastic deformation of the solid medium, variational phase-field models for brittle fracture that couple a phase-field equation for fracture evolution with linearized elasticity, and the Cahn-Larché equations that model elastic effects in a two-phase elastic material and couples an extended Cahn-Hilliard phase-field equation and linearized elasticity. Finally, the new system of equations that is proposed models flow through a two-phase deformable porous material where the solid phase evolution is governed by interfacial forces as well as effects from both the fluid and elastic properties of the material. In the work that concerns the quasi-static linearized Biot equations, the focus is on the fixed-stress splitting scheme, which is a popular method for sequentially solving the flow and elasticity subsystems of the full model. Using such a method is beneficial as it allows for the use of readily available solvers for the subproblems; however, a stabilizing term is required for the scheme to converge. It is well known that the convergence properties of the method strongly depend on how this term is chosen, and here, the optimal choice of it is addressed both theoretically and practically. An interval where the optimal stabilization parameter lies is provided, depending on the material parameters. In addition, two different ways of optimizing the parameter are proposed. The first is a brute-force method that relies on the mesh independence of the scheme's optimal stabilization parameter, and the second is valid for low-permeable media and utilizes an equivalence between the fixed-stress splitting scheme and the modified Richardson iteration. Regarding the variational phase-field model for brittle fracture propagation, the focus is on improving the convergence properties of the most commonly used solution strategy with an acceleration method. This solution strategy relies on a staggered scheme that alternates between solving the elasticity and phase-field subproblems in an iterative way. This is known to be a robust method compared to the monolithic Newton method. However, the staggered scheme often requires many iterations to converge to satisfactory precision. The contribution of this work is to accelerate the solver through a new acceleration method that combines Anderson acceleration and over-relaxation, dynamically switching back and forth between them depending on a criterion that takes the residual evolution into account. The acceleration scheme takes advantage of the strengths of both Anderson acceleration and over-relaxation, and the fact that they are complementary when applied to this problem, resulting in a significant speed-up of the convergence. Moreover, the method is applied as a post-processing technique to the increments of the solver, and can thus be implemented with minor modifications to readily available software. The final contribution toward solution strategies for coupled problems focuses on the Cahn-Larché equations. This is a model for linearized elasticity in a medium with two elastic phases that evolve with respect to interfacial forces and elastic effects. The system couples linearized elasticity and an extended Cahn-Hilliard phase-field equation. There are several challenging features with regards to solution strategies for this system including nonlinear coupling terms, and the fourth-order term that comes from the Cahn-Hilliard subsystem. Moreover, the system is nonlinear and non-convex with respect to both the phase-field and the displacement. In this work, a new semi-implicit time discretization that extends the standard convex-concave splitting method applied to the double-well potential from the Cahn-Hilliard subsystem is proposed. The extension includes special treatment for the elastic energy, and it is shown that the resulting discrete system is equivalent to a convex minimization problem. Furthermore, an alternating minimization solver is proposed for the fully discrete system, together with a convergence proof that includes convergence rates. Through numerical experiments, it becomes evident that the newly proposed discretization method leads to a system that is far better conditioned for linearization methods than standard time discretizations. Finally, a new model for flow through a two-phase deformable porous material is proposed. The two poroelastic phases have distinct material properties, and their interface evolves according to a generalized Ginzburg–Landau energy functional. As a result, a model that extends the Cahn-Larché equations to poroelasticity is proposed, and essential coupling terms for several applications are highlighted. These include solid tumor growth, biogrout, and wood growth. Moreover, the coupled set of equations is shown to be a generalized gradient flow. This implies that the system is thermodynamically consistent and makes a toolbox of analysis and solvers available for further study of the model.Doktorgradsavhandlin

    Enhanced multiscale restriction-smoothed basis (MsRSB) preconditioning with applications to porous media flow and geomechanics

    Full text link
    A novel method to enable application of the Multiscale Restricted Smoothed Basis (MsRSB) method to non M-matrices is presented. The original MsRSB method is enhanced with a filtering strategy enforcing M-matrix properties to enable the robust application of MsRSB as a preconditioner. Through applications to porous media flow and linear elastic geomechanics, the method is proven to be effective for scalar and vector problems with multipoint finite volume (FV) and finite element (FE) discretization schemes, respectively. Realistic complex (un)structured two- and three-dimensional test cases are considered to illustrate the method's performance

    Coupling of flow, contact mechanics and friction, generating waves in a fractured porous medium

    Full text link
    We present a mixed dimensional model for a fractured poro-elasic medium including contact mechanics. The fracture is a lower dimensional surface embedded in a bulk poro-elastic matrix. The flow equation on the fracture is a Darcy type model that follows the cubic law for permeability. The bulk poro-elasticity is governed by fully dynamic Biot equations. The resulting model is a mixed dimensional type where the fracture flow on a surface is coupled to a bulk flow and geomechanics model. The particularity of the work here is in considering fully dynamic Biot equation, that is, including an inertia term, and the contact mechanics including friction for the fracture surface. We prove the well-posedness of the continuous model

    Specific Surface Area Determination on Chalk Drill Cuttings

    Get PDF
    corecore