695 research outputs found

    Machine Learning and Pattern Recognition Methods for Remote Sensing Image Registration and Fusion

    Get PDF
    In the last decade, the remote sensing world has dramatically evolved. New types of sensor, each one collecting data with possibly different modalities, have been designed, developed, and deployed. Moreover, new missions have been planned and launched, aimed not only at collecting data of the Earth's surface, but also at acquiring planetary data in support of the study of the whole Solar system. Indeed, such a variety of technologies highlights the need for automatic methods able to effectively exploit all the available information. In the last years, lot of effort has been put in the design and development of advanced data fusion methods able to extract and make use of all the information available from as many complementary information sources as possible. Indeed, the goal of this thesis is to present novel machine learning and pattern recognition methodologies designed to support the exploitation of diverse sources of information, such as multisensor, multimodal, or multiresolution imagery. In this context, image registration plays a major role as is allows bringing two or more digital images into precise alignment for analysis and comparison. Here, image registration is tackled using both feature-based and area-based strategies. In the former case, the features of interest are extracted using a stochastic geometry model based on marked point processes, while, in the latter case, information theoretic functionals and the domain adaptation capabilities of generative adversarial networks are exploited. In addition, multisensor image registration is also applied in a large scale scenario by introducing a tiling-based strategy aimed at minimizing the computational burden, which is usually heavy in the multisensor case due to the need for information theoretic similarity measures. Moreover, automatic change detection with multiresolution and multimodality imagery is addressed via a novel Markovian framework based on a linear mixture model and on an ad-hoc multimodal energy function minimized using graph cuts or belied propagation methods. The statistics of the data at the various spatial scales is modelled through appropriate generalized Gaussian distributions and by iteratively estimating a set of virtual images, at the finest resolution, representing the data that would have been collected in case all the sensors worked at that resolution. All such methodologies have been experimentally evaluated with respect to different datasets, and with particular focus on the trade-off between the achievable performances and the demands in terms of computational resources. Moreover, such methods are also compared with state-of-the-art solutions, and are analyzed in terms of future developments, giving insights to possible future lines of research in this field

    Image fusion techniqes for remote sensing applications

    Get PDF
    Image fusion refers to the acquisition, processing and synergistic combination of information provided by various sensors or by the same sensor in many measuring contexts. The aim of this survey paper is to describe three typical applications of data fusion in remote sensing. The first study case considers the problem of the Synthetic Aperture Radar (SAR) Interferometry, where a pair of antennas are used to obtain an elevation map of the observed scene; the second one refers to the fusion of multisensor and multitemporal (Landsat Thematic Mapper and SAR) images of the same site acquired at different times, by using neural networks; the third one presents a processor to fuse multifrequency, multipolarization and mutiresolution SAR images, based on wavelet transform and multiscale Kalman filter. Each study case presents also results achieved by the proposed techniques applied to real data

    Mapping and monitoring forest remnants : a multiscale analysis of spatio-temporal data

    Get PDF
    KEYWORDS : Landsat, time series, machine learning, semideciduous Atlantic forest, Brazil, wavelet transforms, classification, change detectionForests play a major role in important global matters such as carbon cycle, climate change, and biodiversity. Besides, forests also influence soil and water dynamics with major consequences for ecological relations and decision-making. One basic requirement to quantify and model these processes is the availability of accurate maps of forest cover. Data acquisition and analysis at appropriate scales is the keystone to achieve the mapping accuracy needed for development and reliable use of ecological models.The current and upcoming production of high-resolution data sets plus the ever-increasing time series that have been collected since the seventieth must be effectively explored. Missing values and distortions further complicate the analysis of this data set. Thus, integration and proper analysis is of utmost importance for environmental research. New conceptual models in environmental sciences, like the perception of multiple scales, require the development of effective implementation techniques.This thesis presents new methodologies to map and monitor forests on large, highly fragmented areas with complex land use patterns. The use of temporal information is extensively explored to distinguish natural forests from other land cover types that are spectrally similar. In chapter 4, novel schemes based on multiscale wavelet analysis are introduced, which enabled an effective preprocessing of long time series of Landsat data and improved its applicability on environmental assessment.In chapter 5, the produced time series as well as other information on spectral and spatial characteristics were used to classify forested areas in an experiment relating a number of combinations of attribute features. Feature sets were defined based on expert knowledge and on data mining techniques to be input to traditional and machine learning algorithms for pattern recognition, viz . maximum likelihood, univariate and multivariate decision trees, and neural networks. The results showed that maximum likelihood classification using temporal texture descriptors as extracted with wavelet transforms was most accurate to classify the semideciduous Atlantic forest in the study area.In chapter 6, a multiscale approach to digital change detection was developed to deal with multisensor and noisy remotely sensed images. Changes were extracted according to size classes minimising the effects of geometric and radiometric misregistration.Finally, in chapter 7, an automated procedure for GIS updating based on feature extraction, segmentation and classification was developed to monitor the remnants of semideciduos Atlantic forest. The procedure showed significant improvements over post classification comparison and direct multidate classification based on artificial neural networks.</p

    Mapping and classification of ecologically sensitive marine habitats using unmanned aerial vehicle (UAV) imagery and object-based image analysis (OBIA)

    Get PDF
    Nowadays, emerging technologies, such as long-range transmitters, increasingly miniaturized components for positioning, and enhanced imaging sensors, have led to an upsurge in the availability of new ecological applications for remote sensing based on unmanned aerial vehicles (UAVs), sometimes referred to as “drones”. In fact, structure-from-motion (SfM) photogrammetry coupled with imagery acquired by UAVs offers a rapid and inexpensive tool to produce high-resolution orthomosaics, giving ecologists a new way for responsive, timely, and cost-effective monitoring of ecological processes. Here, we adopted a lightweight quadcopter as an aerial survey tool and object-based image analysis (OBIA) workflow to demonstrate the strength of such methods in producing very high spatial resolution maps of sensitive marine habitats. Therefore, three different coastal environments were mapped using the autonomous flight capability of a lightweight UAV equipped with a fully stabilized consumer-grade RGB digital camera. In particular we investigated a Posidonia oceanica seagrass meadow, a rocky coast with nurseries for juvenile fish, and two sandy areas showing biogenic reefs of Sabelleria alveolata. We adopted, for the first time, UAV-based raster thematic maps of these key coastal habitats, produced after OBIA classification, as a new method for fine-scale, low-cost, and time saving characterization of sensitive marine environments which may lead to a more effective and efficient monitoring and management of natural resource

    Multi-Fusion algorithms for Detecting Land Surface Pattern Changes Using Multi-High Spatial Resolution Images and Remote Sensing Analysis

    Get PDF
    Producing accurate Land-Use and Land-Cover (LU/LC) maps using low-spatial-resolution images is a difficult task. Pan-sharpening is crucial for estimating LU/LC patterns. This study aimed to identify the most precise procedure for estimating LU/LC by adopting two fusion approaches, namely Color Normalized Brovey (BM) and Gram-Schmidt Spectral Sharpening (GS), on high-spatial-resolution Multi-sensor and Multi-spectral images, such as (1) the Unmanned Aerial Vehicle (UAV) system, (2) the WorldView-2 satellite system, and (3) low-spatial-resolution images like the Sentinel-2 satellite, to generate six levels of fused images with the three original multi-spectral images. The Maximum Likelihood method (ML) was used for classifying all nine images. A confusion matrix was used to evaluate the accuracy of each single classified image. The obtained results were statistically compared to determine the most reliable, accurate, and appropriate LU/LC map and procedure. It was found that applying GS to the fused image, which integrated WorldView-2 and Sentinel-2 satellite images and was classified by the ML method, produced the most accurate results. This procedure has an overall accuracy of 88.47% and a kappa coefficient of 0.85. However, the overall accuracies of the three classified multispectral images range between 86.84% to 76.49%. Furthermore, the accuracy assessment of the fused images by the Brovey method and the rest of the GS method and classified by the ML method ranges between 85.75% to 76.68%. This proposed procedure shows a lot of promise in the academic sphere for mapping LU/LC. Previous researchers have mostly used satellite images or datasets with similar spatial and spectral resolution, at least for tropical areas like the study area of this research, to detect land surface patterns. However, no one has previously investigated and examined the use and application of different datasets that have different spectral and spatial resolutions and their accuracy for mapping LU/LC. This study has successfully adopted different datasets provided by different sensors with varying spectral and spatial levels to investigate this. Doi: 10.28991/ESJ-2023-07-04-013 Full Text: PD
    corecore