327 research outputs found

    A multipath energy-conserving routing protocol for wireless ad hoc networks lifetime improvement

    Get PDF
    Ad hoc networks are wireless mobile networks that can operate without infrastructure and without centralized network management. Traditional techniques of routing are not well adapted. Indeed, their lack of reactivity with respect to the variability of network changes makes them difficult to use. Moreover, conserving energy is a critical concern in the design of routing protocols for ad hoc networks, because most mobile nodes operate with limited battery capacity, and the energy depletion of a node affects not only the node itself but also the overall network lifetime. In all proposed single-path routing schemes a new path-discovery process is required once a path failure is detected, and this process causes delay and wastage of node resources. A multipath routing scheme is an alternative to maximize the network lifetime. In this paper, we propose an energy-efficient multipath routing protocol, called AOMR-LM (Ad hoc On-demand Multipath Routing with Lifetime Maximization), which preserves the residual energy of nodes and balances the consumed energy to increase the network lifetime. To achieve this goal, we used the residual energy of nodes for calculating the node energy level. The multipath selection mechanism uses this energy level to classify the paths. Two parameters are analyzed: the energy threshold beta and the coefficient alpha. These parameters are required to classify the nodes and to ensure the preservation of node energy. Our protocol improves the performance of mobile ad hoc networks by prolonging the lifetime of the network. This novel protocol has been compared with other protocols: AOMDV and ZD-AOMDV. The protocol performance has been evaluated in terms of network lifetime, energy consumption, and end-to-end delay

    Route discovery based on energy-distance aware routing scheme for MANET

    Get PDF
    Route discovery proses in a Mobile Ad hoc Network (MANET) is challenging due to the limitation of energy at each network node. The energy constraint limits network connection lifetime thus affecting the routing process. Therefore, it is necessary for each node in the network to calculate routing factor in terms of energy and distance in deciding optimal candidate relay nodes needed to forward packets. This study proposes a new route discovery mechanism called the Energy-Distance Routing Aware (EDRA) that determines the selection of nodes during route discovery process to improve the network connection lifetime. This mechanism comprises of three schemes namely the Energy-Distance Factor Aware (EDFA), the Energy-Distance Forward Strategy (EDFS), and the Energy-Aware Route Selection (EARS). The EDFA scheme begins by calculating each nodes energy level (ei) and the distance (di) to the neighbouring nodes to produce the energy-distance factor value used in selecting the relay nodes. Next, the EDFS scheme forwards route request packets within discovery area of relay nodes based on the number of nodes. Then, the EARS scheme selects stable routing path utilising updated status information from EDFA and EDFS. The evaluation of EDRA mechanism is performed using network simulator Ns2 based on a defined set of performance metrics, scenarios and network scalability. The experimental results show that the EDRA gains significant improvement in the network connection lifetime when compared to those of the similar mechanisms, namely the AODV and the DREAM. EDRA also optimises energy consumption by utilising efficient forwarding decisions on varying scale of network nodes. Moreover, EDRA maximizes network connection lifetime while preserving throughput and packet drop ratio. This study contributes toward developing an efficient energy-aware routing to sustain longer network connection lifetime in MANET environment. The contribution is significant in promoting the use of green and sustainable next generation network technology

    Optimized reduction approach of congestion in mobile ad hoc network based on Lagrange multiplier

    Get PDF
    Over the past decades, computer networks have experienced an outbreak and with that came severe congestion problems. Congestion is a crucial determinant in the delivery of delay-sensitive applications (voice and video) and the quality of the network. in this paper, the Lagrangian optimization rate, delay, packet loss, and congestion approach (LORDPC) are presented. A congestion avoidance routing method for device-to-device (D2D) nodes in an ad hoc network that addresses the traffic intensity problem. The method of Lagrange multipliers is utilized for active route election to dodge heavy traffic links. To demonstrate the effectiveness of our proposed method, we applied extensive simulation that presents path discovery and selection. Results show that LORDPC decreases delay and traffic intensity while maintaining a high bitrate and low packet loss rate and it outperformed the ad hoc on-demand distance vector (AODV) protocol and the Lagrangian optimization rate, delay, and packet loss, approach (LORDP)

    Improving Performance of AODV with Energy Efficient Routing in MANET

    Get PDF
    One of the most widely used Multi hop network is Mobile Ad hoc Network (MANET) with energy constraints, limited battery power and nodes that exhibit routing functionality. The Architectural concern is mobile ad hoc network is to build appropriate and efficient routes. In MANET, it is required to save the battery power of node as there is repeated variation in position of node which lowers battery charge of the node. Energy efficiency is an important aspect in saving energy consumption of the network. In this paper we proposed energy efficient routing protocol which reduces energy consumption and thus improves network lifetime of network. Simulation is performed using network simulator NS2 and results shows that our proposed protocol reduces delay and increases throughput, packet delivery ratio by consuming less energy compared to existing AODV routing protocol

    Power Aware Routing for Sensor Databases

    Full text link
    Wireless sensor networks offer the potential to span and monitor large geographical areas inexpensively. Sensor network databases like TinyDB are the dominant architectures to extract and manage data in such networks. Since sensors have significant power constraints (battery life), and high communication costs, design of energy efficient communication algorithms is of great importance. The data flow in a sensor database is very different from data flow in an ordinary network and poses novel challenges in designing efficient routing algorithms. In this work we explore the problem of energy efficient routing for various different types of database queries and show that in general, this problem is NP-complete. We give a constant factor approximation algorithm for one class of query, and for other queries give heuristic algorithms. We evaluate the efficiency of the proposed algorithms by simulation and demonstrate their near optimal performance for various network sizes

    Improved Fair-Zone technique using Mobility Prediction in WSN

    Full text link
    The self-organizational ability of ad-hoc Wireless Sensor Networks (WSNs) has led them to be the most popular choice in ubiquitous computing. Clustering sensor nodes organizing them hierarchically have proven to be an effective method to provide better data aggregation and scalability for the sensor network while conserving limited energy. It has some limitation in energy and mobility of nodes. In this paper we propose a mobility prediction technique which tries overcoming above mentioned problems and improves the life time of the network. The technique used here is Exponential Moving Average for online updates of nodal contact probability in cluster based network.Comment: 10 pages, 7 figures, Published in International Journal Of Advanced Smart Sensor Network Systems (IJASSN
    • 

    corecore