5 research outputs found

    Decimal Floating-point Fused Multiply Add with Redundant Number Systems

    Get PDF
    The IEEE standard of decimal floating-point arithmetic was officially released in 2008. The new decimal floating-point (DFP) format and arithmetic can be applied to remedy the conversion error caused by representing decimal floating-point numbers in binary floating-point format and to improve the computing performance of the decimal processing in commercial and financial applications. Nowadays, many architectures and algorithms of individual arithmetic functions for decimal floating-point numbers are proposed and investigated (e.g., addition, multiplication, division, and square root). However, because of the less efficiency of representing decimal number in binary devices, the area consumption and performance of the DFP arithmetic units are not comparable with the binary counterparts. IBM proposed a binary fused multiply-add (FMA) function in the POWER series of processors in order to improve the performance of floating-point computations and to reduce the complexity of hardware design in reduced instruction set computing (RISC) systems. Such an instruction also has been approved to be suitable for efficiently implementing not only stand-alone addition and multiplication, but also division, square root, and other transcendental functions. Additionally, unconventional number systems including digit sets and encodings have displayed advantages on performance and area efficiency in many applications of computer arithmetic. In this research, by analyzing the typical binary floating-point FMA designs and the design strategy of unconventional number systems, ``a high performance decimal floating-point fused multiply-add (DFMA) with redundant internal encodings" was proposed. First, the fixed-point components inside the DFMA (i.e., addition and multiplication) were studied and investigated as the basis of the FMA architecture. The specific number systems were also applied to improve the basic decimal fixed-point arithmetic. The superiority of redundant number systems in stand-alone decimal fixed-point addition and multiplication has been proved by the synthesis results. Afterwards, a new DFMA architecture which exploits the specific redundant internal operands was proposed. Overall, the specific number system improved, not only the efficiency of the fixed-point addition and multiplication inside the FMA, but also the architecture and algorithms to build up the FMA itself. The functional division, square root, reciprocal, reciprocal square root, and many other functions, which exploit the Newton's or other similar methods, can benefit from the proposed DFMA architecture. With few necessary on-chip memory devices (e.g., Look-up tables) or even only software routines, these functions can be implemented on the basis of the hardwired FMA function. Therefore, the proposed DFMA can be implemented on chip solely as a key component to reduce the hardware cost. Additionally, our research on the decimal arithmetic with unconventional number systems expands the way of performing other high-performance decimal arithmetic (e.g., stand-alone division and square root) upon the basic binary devices (i.e., AND gate, OR gate, and binary full adder). The proposed techniques are also expected to be helpful to other non-binary based applications

    Squared Law Algorithms: Theory and Applications.

    Get PDF
    This dissertation focuses on a new approach for a hardware implementation of the cyclic convolution operation. The cyclic convolution operation is the core of several functions used in applications related to digital signal processing and error control. Since the operation is multiplication intensive and the cost of a multiplication operation is very high, most of the present research effort attempts to reduce the number of multiplications. Our approach, however, aims at obtaining an efficient implementation by relying on the properties of the special case of multiplication, namely, the squaring operation. Due to the properties exhibited by the squaring operation the hardware cost and time delay of a squarer unit is both cheaper and faster than that of a multiplication unit. This is true for both memory and non-memory based implementations. In this dissertation we have developed all the necessary theory required to express the cyclic convolution of two n-point sequences, where n is a power of 2, in terms of the elementary arithmetic operations add, square, and subtract. Our algorithms require fewer squaring operations than multiplication operations required by a traditional implementation of the cyclic convolution operation, do not introduce any round-off errors, place no restriction on word length, and are valid when the number of points to be convolved is a power of two. We then clearly demonstrate that our algorithms are also more hardware efficient for both memory and non-memory based implementations. Further, schemes to multiply two numbers based on the cyclic convolution operation are presented. Finally, efficient ways of computing the squaring operation when arithmetic is performed in modular rings are developed

    Variable block size motion estimation hardware for video encoders.

    Get PDF
    Li, Man Ho.Thesis submitted in: November 2006.Thesis (M.Phil.)--Chinese University of Hong Kong, 2007.Includes bibliographical references (leaves 137-143).Abstracts in English and Chinese.Abstract --- p.iAcknowledgement --- p.ivChapter 1 --- Introduction --- p.1Chapter 1.1 --- Motivation --- p.3Chapter 1.2 --- The objectives of this thesis --- p.4Chapter 1.3 --- Contributions --- p.5Chapter 1.4 --- Thesis structure --- p.6Chapter 2 --- Digital video compression --- p.8Chapter 2.1 --- Introduction --- p.8Chapter 2.2 --- Fundamentals of lossy video compression --- p.9Chapter 2.2.1 --- Video compression and human visual systems --- p.10Chapter 2.2.2 --- Representation of color --- p.10Chapter 2.2.3 --- Sampling methods - frames and fields --- p.11Chapter 2.2.4 --- Compression methods --- p.11Chapter 2.2.5 --- Motion estimation --- p.12Chapter 2.2.6 --- Motion compensation --- p.13Chapter 2.2.7 --- Transform --- p.13Chapter 2.2.8 --- Quantization --- p.14Chapter 2.2.9 --- Entropy Encoding --- p.14Chapter 2.2.10 --- Intra-prediction unit --- p.14Chapter 2.2.11 --- Deblocking filter --- p.15Chapter 2.2.12 --- Complexity analysis of on different com- pression stages --- p.16Chapter 2.3 --- Motion estimation process --- p.16Chapter 2.3.1 --- Block-based matching method --- p.16Chapter 2.3.2 --- Motion estimation procedure --- p.18Chapter 2.3.3 --- Matching Criteria --- p.19Chapter 2.3.4 --- Motion vectors --- p.21Chapter 2.3.5 --- Quality judgment --- p.22Chapter 2.4 --- Block-based matching algorithms for motion estimation --- p.23Chapter 2.4.1 --- Full search (FS) --- p.23Chapter 2.4.2 --- Three-step search (TSS) --- p.24Chapter 2.4.3 --- Two-dimensional Logarithmic Search Algorithm (2D-log search) --- p.25Chapter 2.4.4 --- Diamond Search (DS) --- p.25Chapter 2.4.5 --- Fast full search (FFS) --- p.26Chapter 2.5 --- Complexity analysis of motion estimation --- p.27Chapter 2.5.1 --- Different searching algorithms --- p.28Chapter 2.5.2 --- Fixed-block size motion estimation --- p.28Chapter 2.5.3 --- Variable block size motion estimation --- p.29Chapter 2.5.4 --- Sub-pixel motion estimation --- p.30Chapter 2.5.5 --- Multi-reference frame motion estimation . --- p.30Chapter 2.6 --- Picture quality analysis --- p.31Chapter 2.7 --- Summary --- p.32Chapter 3 --- Arithmetic for video encoding --- p.33Chapter 3.1 --- Introduction --- p.33Chapter 3.2 --- Number systems --- p.34Chapter 3.2.1 --- Non-redundant Number System --- p.34Chapter 3.2.2 --- Redundant number system --- p.36Chapter 3.3 --- Addition/subtraction algorithm --- p.38Chapter 3.3.1 --- Non-redundant number addition --- p.39Chapter 3.3.2 --- Carry-save number addition --- p.39Chapter 3.3.3 --- Signed-digit number addition --- p.40Chapter 3.4 --- Bit-serial algorithms --- p.42Chapter 3.4.1 --- Least-significant-bit (LSB) first mode --- p.42Chapter 3.4.2 --- Most-significant-bit (MSB) first mode --- p.43Chapter 3.5 --- Absolute difference algorithm --- p.44Chapter 3.5.1 --- Non-redundant algorithm for absolute difference --- p.44Chapter 3.5.2 --- Redundant algorithm for absolute difference --- p.45Chapter 3.6 --- Multi-operand addition algorithm --- p.47Chapter 3.6.1 --- Bit-parallel non-redundant adder tree implementation --- p.47Chapter 3.6.2 --- Bit-parallel carry-save adder tree implementation --- p.49Chapter 3.6.3 --- Bit serial signed digit adder tree implementation --- p.49Chapter 3.7 --- Comparison algorithms --- p.50Chapter 3.7.1 --- Non-redundant comparison algorithm --- p.51Chapter 3.7.2 --- Signed-digit comparison algorithm --- p.52Chapter 3.8 --- Summary --- p.53Chapter 4 --- VLSI architectures for video encoding --- p.54Chapter 4.1 --- Introduction --- p.54Chapter 4.2 --- Implementation platform - (FPGA) --- p.55Chapter 4.2.1 --- Basic FPGA architecture --- p.55Chapter 4.2.2 --- DSP blocks in FPGA device --- p.56Chapter 4.2.3 --- Advantages employing FPGA --- p.57Chapter 4.2.4 --- Commercial FPGA Device --- p.58Chapter 4.3 --- Top level architecture of motion estimation processor --- p.59Chapter 4.4 --- Bit-parallel architectures for motion estimation --- p.60Chapter 4.4.1 --- Systolic arrays --- p.60Chapter 4.4.2 --- Mapping of a motion estimation algorithm onto systolic array --- p.61Chapter 4.4.3 --- 1-D systolic array architecture (LA-ID) --- p.63Chapter 4.4.4 --- 2-D systolic array architecture (LA-2D) --- p.64Chapter 4.4.5 --- 1-D Tree architecture (GA-1D) --- p.64Chapter 4.4.6 --- 2-D Tree architecture (GA-2D) --- p.65Chapter 4.4.7 --- Variable block size support in bit-parallel architectures --- p.66Chapter 4.5 --- Bit-serial motion estimation architecture --- p.68Chapter 4.5.1 --- Data Processing Direction --- p.68Chapter 4.5.2 --- Algorithm mapping and dataflow design . --- p.68Chapter 4.5.3 --- Early termination scheme --- p.69Chapter 4.5.4 --- Top-level architecture --- p.70Chapter 4.5.5 --- Non redundant positive number to signed digit conversion --- p.71Chapter 4.5.6 --- Signed-digit adder tree --- p.73Chapter 4.5.7 --- SAD merger --- p.74Chapter 4.5.8 --- Signed-digit comparator --- p.75Chapter 4.5.9 --- Early termination controller --- p.76Chapter 4.5.10 --- Data scheduling and timeline --- p.80Chapter 4.6 --- Decision metric in different architectural types . . --- p.80Chapter 4.6.1 --- Throughput --- p.81Chapter 4.6.2 --- Memory bandwidth --- p.83Chapter 4.6.3 --- Silicon area occupied and power consump- tion --- p.83Chapter 4.7 --- Architecture selection for different applications . . --- p.84Chapter 4.7.1 --- CIF and QCIF resolution --- p.84Chapter 4.7.2 --- SDTV resolution --- p.85Chapter 4.7.3 --- HDTV resolution --- p.85Chapter 4.8 --- Summary --- p.86Chapter 5 --- Results and comparison --- p.87Chapter 5.1 --- Introduction --- p.87Chapter 5.2 --- Implementation details --- p.87Chapter 5.2.1 --- Bit-parallel 1-D systolic array --- p.88Chapter 5.2.2 --- Bit-parallel 2-D systolic array --- p.89Chapter 5.2.3 --- Bit-parallel Tree architecture --- p.90Chapter 5.2.4 --- MSB-first bit-serial design --- p.91Chapter 5.3 --- Comparison between motion estimation architectures --- p.93Chapter 5.3.1 --- Throughput and latency --- p.93Chapter 5.3.2 --- Occupied resources --- p.94Chapter 5.3.3 --- Memory bandwidth --- p.95Chapter 5.3.4 --- Motion estimation algorithm --- p.95Chapter 5.3.5 --- Power consumption --- p.97Chapter 5.4 --- Comparison to ASIC and FPGA architectures in past literature --- p.99Chapter 5.5 --- Summary --- p.101Chapter 6 --- Conclusion --- p.102Chapter 6.1 --- Summary --- p.102Chapter 6.1.1 --- Algorithmic optimizations --- p.102Chapter 6.1.2 --- Architecture and arithmetic optimizations --- p.103Chapter 6.1.3 --- Implementation on a FPGA platform . . . --- p.104Chapter 6.2 --- Future work --- p.106Chapter A --- VHDL Sources --- p.108Chapter A.1 --- Online Full Adder --- p.108Chapter A.2 --- Online Signed Digit Full Adder --- p.109Chapter A.3 --- Online Pull Adder Tree --- p.110Chapter A.4 --- SAD merger --- p.112Chapter A.5 --- Signed digit adder tree stage (top) --- p.116Chapter A.6 --- Absolute element --- p.118Chapter A.7 --- Absolute stage (top) --- p.119Chapter A.8 --- Online comparator element --- p.120Chapter A.9 --- Comparator stage (top) --- p.122Chapter A.10 --- MSB-first motion estimation processor --- p.134Bibliography --- p.13

    Analysis and implementation of decimal arithmetic hardware in nanometer CMOS technology

    Get PDF
    Scope and Method of Study: In today's society, decimal arithmetic is growing considerably in importance given its relevance in financial and commercial applications. Decimal calculations on binary hardware significantly impact performance mainly because most systems utilize software to emulate decimal calculations. The introduction of dedicated decimal hardware on the other hand promises the ability to improve performance by two or three orders of magnitude. The founding blocks of binary arithmetic are studied and applied to the development of decimal arithmetic hardware. New findings are contrasted with existent implementations and validated through extensive simulation.Findings and Conclusions: New architectures and a significant study of decimal arithmetic was developed and implemented. The architectures proposed include an IEEE-754 current revision draft compliant floating-point comparator, a study on decimal division, partial product reduction schemes using decimal compressor trees and a final implementation of a decimal multiplier using advanced techniques for partial product generation. The results of each hardware implementation in nanometer technologies are weighed against existent propositions and show improvements upon area, delay, and power
    corecore