3,070 research outputs found

    Multi-objective model for optimizing railway infrastructure asset renewal

    Get PDF
    Trabalho inspirado num problema real da empresa Infraestruturas de Portugal, EP.A multi-objective model for managing railway infrastructure asset renewal is presented. The model aims to optimize three objectives, while respecting operational constraints: levelling investment throughout multiple years, minimizing total cost and minimizing work start postponements. Its output is an optimized intervention schedule. The model is based on a case study from a Portuguese infrastructure management company, which specified the objectives and constraints, and reflects management practice on railway infrastructure. The results show that investment levelling greatly influences the other objectives and that total cost fluctuations may range from insignificant to important, depending on the condition of the infrastructure. The results structure is argued to be general and suggests a practical methodology for analysing trade-offs and selecting a solution for implementation.info:eu-repo/semantics/publishedVersio

    Optimal management of bio-based energy supply chains under parametric uncertainty through a data-driven decision-support framework

    Get PDF
    This paper addresses the optimal management of a multi-objective bio-based energy supply chain network subjected to multiple sources of uncertainty. The complexity to obtain an optimal solution using traditional uncertainty management methods dramatically increases with the number of uncertain factors considered. Such a complexity produces that, if tractable, the problem is solved after a large computational effort. Therefore, in this work a data-driven decision-making framework is proposed to address this issue. Such a framework exploits machine learning techniques to efficiently approximate the optimal management decisions considering a set of uncertain parameters that continuously influence the process behavior as an input. A design of computer experiments technique is used in order to combine these parameters and produce a matrix of representative information. These data are used to optimize the deterministic multi-objective bio-based energy network problem through conventional optimization methods, leading to a detailed (but elementary) map of the optimal management decisions based on the uncertain parameters. Afterwards, the detailed data-driven relations are described/identified using an Ordinary Kriging meta-model. The result exhibits a very high accuracy of the parametric meta-models for predicting the optimal decision variables in comparison with the traditional stochastic approach. Besides, and more importantly, a dramatic reduction of the computational effort required to obtain these optimal values in response to the change of the uncertain parameters is achieved. Thus the use of the proposed data-driven decision tool promotes a time-effective optimal decision making, which represents a step forward to use data-driven strategy in large-scale/complex industrial problems.Peer ReviewedPostprint (published version

    Conservation Return on Investment Analysis: A Review of Results, Methods, and New Directions

    Get PDF
    Conservation investments are increasingly evaluated on the basis of their return on investment (ROI). Conservation ROI analysis quantitatively measures the costs, benefits, and risks of investments so conservancies can rank or prioritize them. This paper surveys the existing conservation ROI and related literatures. We organize our synthesis around the way studies treat recurring, core elements of ROI, as a guide for practitioners and consumers of future ROI analyses. ROI analyses involve quantification of a consistent set of elements, including the definition and measurement of the conservation objective as well as identification of the relevant baselines, the type of conservation investments evaluated, and investment costs. We document the state of the art, note some open questions, and provide suggestions for future improvements in data and methods. We also describe ways ROI analysis can be extended to a broader suite of conservation outcomes than biodiversity conservation, which is the typical focus.return on investment, conservation planning, reserve site selection

    A systematic review of application of multi-criteria decision analysis for aging-dam management

    Get PDF
    [EN] Decisions for aging-dam management requires a transparent process to prevent the dam failure, thus to avoid severe consequences in socio-economic and environmental terms. Multiple criteria analysis arose to model complex problems like this. This paper reviews specific problems, applications and Multi-Criteria Decision Making techniques for dam management. Multi-Attribute Decision Making techniques had a major presence under the single approach, specially the Analytic Hierarchy Process, and its combination with Technique for Order of Preference by Similarity to Ideal Solution was prominent under the hybrid approach; while a high variety of complementary techniques was identified. A growing hybridization and fuzzification are the two most relevant trends observed. The integration of stakeholders within the decision making process and the inclusion of trade-offs and interactions between components within the evaluation model must receive a deeper exploration. Despite the progressive consolidation of Multi-Criteria Decision Making in dam management, further research is required to differentiate between rational and intuitive decision processes. Additionally, the need to address benefits, opportunities, costs and risks related to repair, upgrading or removal measures in aging dams suggests the Analytic Network Process, not yet explored under this approach, as an interesting path worth investigating.This research was funded by the Spanish Ministry of Economy and Competitiveness along with FEDER funding (Projects BIA201456574-R and ECO2015-66673-R).Zamarrรณn-Mieza, I.; Yepes, V.; Moreno-Jimรฉnez, JM. (2017). A systematic review of application of multi-criteria decision analysis for aging-dam management. Journal of Cleaner Production. 147:217-230. https://doi.org/10.1016/j.jclepro.2017.01.092S21723014

    A RISK-INFORMED DECISION-MAKING METHODOLOGY TO IMPROVE LIQUID ROCKET ENGINE PROGRAM TRADEOFFS

    Get PDF
    This work provides a risk-informed decision-making methodology to improve liquid rocket engine program tradeoffs with the conflicting areas of concern affordability, reliability, and initial operational capability (IOC) by taking into account psychological and economic theories in combination with reliability engineering. Technical program risks are associated with the number of predicted failures of the test-analyze-and-fix (TAAF) cycle that is based on the maturity of the engine components. Financial and schedule program risks are associated with the epistemic uncertainty of the models that determine the measures of effectiveness in the three areas of concern. The affordability and IOC models' inputs reflect non-technical and technical factors such as team experience, design scope, technology readiness level, and manufacturing readiness level. The reliability model introduces the Reliability- As-an-Independent-Variable (RAIV) strategy that aggregates fictitious or actual hotfire tests of testing profiles that differ from the actual mission profile to estimate the system reliability. The main RAIV strategy inputs are the physical or functional architecture of the system, the principal test plan strategy, a stated reliability-bycredibility requirement, and the failure mechanisms that define the reliable life of the system components. The results of the RAIV strategy, which are the number of hardware sets and number of hot-fire tests, are used as inputs to the affordability and the IOC models. Satisficing within each tradeoff is attained by maximizing the weighted sum of the normalized areas of concern subject to constraints that are based on the decision-maker's targets and uncertainty about the affordability, reliability, and IOC using genetic algorithms. In the planning stage of an engine program, the decision variables of the genetic algorithm correspond to fictitious hot-fire tests that include TAAF cycle failures. In the program execution stage, the RAIV strategy is used as reliability growth planning, tracking, and projection model. The main contributions of this work are the development of a comprehensible and consistent risk-informed tradeoff framework, the RAIV strategy that links affordability and reliability, a strategy to define an industry or government standard or guideline for liquid rocket engine hot-fire test plans, and an alternative to the U.S. Crow/AMSAA reliability growth model applying the RAIV strategy

    Virtual power plant models and electricity markets - A review

    Get PDF
    In recent years, the integration of distributed generation in power systems has been accompanied by new facility operations strategies. Thus, it has become increasingly important to enhance management capabilities regarding the aggregation of distributed electricity production and demand through different types of virtual power plants (VPPs). It is also important to exploit their ability to participate in electricity markets to maximize operating profits. This review article focuses on the classification and in-depth analysis of recent studies that propose VPP models including interactions with different types of energy markets. This classification is formulated according to the most important aspects to be considered for these VPPs. These include the formulation of the model, techniques for solving mathematical problems, participation in different types of markets, and the applicability of the proposed models to real case studies. From the analysis of the studies, it is concluded that the most recent models tend to be more complete and realistic in addition to featuring greater diversity in the types of electricity markets in which VPPs participate. The aim of this review is to identify the most profitable VPP scheme to be applied in each regulatory environment. It also highlights the challenges remaining in this field of study

    ์œ ์ „ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ด์šฉํ•œ ๋‹ค์ค‘์Šค์ผ€์ผ/๋‹ค๋ชฉ์  ๊ณต๊ฐ„๊ณ„ํš ์ตœ์ ํ™”๋ชจ๋ธ ๊ตฌ์ถ•

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ํ™˜๊ฒฝ๋Œ€ํ•™์› ํ˜‘๋™๊ณผ์ • ์กฐ๊ฒฝํ•™์ „๊ณต, 2019. 2. ์ด๋™๊ทผ.๊ณต๊ฐ„๊ณ„ํš ๊ณผ์ •์—์„œ ๋‹ค์–‘ํ•œ ์ดํ•ด๊ด€๊ณ„์ž์™€ ๊ฒฐ๋ถ€๋œ ๋ชฉํ‘œ์™€ ์ œ์•ฝ ์š”๊ฑด์„ ๋งŒ์กฑ์‹œํ‚ค๋Š” ๊ฒƒ์€ ๋ณต์žกํ•œ ๋น„์„ ํ˜•์  ๋ฌธ์ œ๋กœ์„œ ํ•ด๊ฒฐํ•˜๊ธฐ ์–ด๋ ค์šด ๊ฒƒ์œผ๋กœ ์•Œ๋ ค์ ธ ์™”๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ตœ๊ทผ ์ด๋Ÿฌํ•œ ๋ฌธ์ œ์— ์œ ์ „ ์•Œ๊ณ ๋ฆฌ์ฆ˜ (genetic algorithms), ๋‹ด๊ธˆ์งˆ ๊ธฐ๋ฒ• (simulated annealing), ๊ฐœ๋ฏธ ๊ตฐ์ง‘ ์ตœ์ ํ™” (ant colony optimization) ๋“ฑ์˜ ๋‹ค๋ชฉ์  ์ตœ์ ํ™” ์•Œ๊ณ ๋ฆฌ์ฆ˜์ด ์‘์šฉ๋˜๊ณ  ์žˆ์œผ๋ฉฐ, ๊ด€๋ จ ์—ฐ๊ตฌ ์—ญ์‹œ ๊ธ‰์ฆํ•˜๊ณ  ์žˆ๋‹ค. ์ด ์ค‘ ์œ ์ „ ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ๊ณต๊ฐ„ ์ตœ์ ํ™” ๋ถ€๋ฌธ์— ๊ฐ€์žฅ ๋นˆ๋„ ๋†’๊ฒŒ ์ ์šฉ๋œ ์ตœ์ ํ™” ์•Œ๊ณ ๋ฆฌ์ฆ˜์œผ๋กœ exploration๊ณผ exploitation์˜ ๊ท ํ˜•์œผ๋กœ ํ•ฉ๋ฆฌ์ ์ธ ์‹œ๊ฐ„ ๋‚ด์— ์ถฉ๋ถ„ํžˆ ์ข‹์€ ๊ณ„ํš์•ˆ์„ ์ œ์‹œํ•  ์ˆ˜ ์žˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๊ณต๊ฐ„ ์ตœ์ ํ™” ์—ฐ๊ตฌ๊ฐ€ ๋ณด์—ฌ์ค€ ์ข‹์€ ์„ฑ๊ณผ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ  ๋Œ€๋ถ€๋ถ„์˜ ์—ฐ๊ตฌ๊ฐ€ ํŠน์ • ์šฉ๋„ ํ˜น์€ ์‹œ์„ค์˜ ๋ฐฐ์น˜์— ์ง‘์ค‘๋˜์–ด ์žˆ์œผ๋ฉฐ, ๊ธฐํ›„๋ณ€ํ™” ์ ์‘, ์žฌํ•ด ๊ด€๋ฆฌ, ๊ทธ๋ฆฐ์ธํ”„๋ผ ๊ณ„ํš๊ณผ ๊ฐ™์€ ์ตœ๊ทผ์˜ ํ™˜๊ฒฝ ์ด์Šˆ๋ฅผ ๋‹ค๋ฃฌ ์‚ฌ๋ก€๋Š” ๋งค์šฐ ๋ฏธํกํ•˜๋‹ค. ๋”ฐ๋ผ์„œ ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์œ ์ „ ์•Œ๊ณ ๋ฆฌ์ฆ˜๊ณผ ๋น„์ง€๋ฐฐ ์ •๋ ฌ ์œ ์ „ ์•Œ๊ณ ๋ฆฌ์ฆ˜ (non-dominated sorting genetic algorithm II)์— ๊ธฐ์ดˆํ•˜์—ฌ ๊ธฐํ›„๋ณ€ํ™” ์ ์‘, ์žฌํ•ด ๊ด€๋ฆฌ, ๋„์‹œ์˜ ๋…น์ง€ ๊ณ„ํš ๋“ฑ๊ณผ ๊ฐ™์€ ํ™˜๊ฒฝ ์ด์Šˆ๋ฅผ ๊ณต๊ฐ„๊ณ„ํš์— ๋ฐ˜์˜ํ•  ์ˆ˜ ์žˆ๋Š” ์ผ๋ จ์˜ ๊ณต๊ฐ„ ์ตœ์ ํ™” ๋ชจ๋ธ์„ ์ œ์‹œํ•˜์˜€๋‹ค. ๊ฐœ๋ณ„ ํ™˜๊ฒฝ ์ด์Šˆ์— ๋”ฐ๋ผ ๊ณต๊ฐ„ ํ•ด์ƒ๋„, ๋ชฉ์ , ์ œ์•ฝ์š”๊ฑด์ด ๋‹ค๋ฅด๊ฒŒ ๊ตฌ์„ฑํ•˜์˜€์œผ๋ฉฐ, ๊ณต๊ฐ„์  ๋ฒ”์œ„๊ฐ€ ์ข์•„์ง€๊ณ  ๊ณต๊ฐ„ํ•ด์ƒ๋„๋Š” ๋†’์•„์ง€๋Š” ์ˆœ์„œ๋Œ€๋กœ ๋‚˜์—ดํ•˜์˜€๋‹ค. ๋…ผ๋ฌธ์˜ ์ฒซ๋ฒˆ์งธ ์žฅ์—์„œ๋Š” ํ–‰์ •๊ตฌ์—ญ ๋„ ๊ทœ๋ชจ (province scale, ํ•ด์ƒ๋„ 1ใŽข)์—์„œ ๋ฏธ๋ž˜์˜ ๊ธฐํ›„๋ณ€ํ™”์— ์ ์‘ํ•˜๊ธฐ ์œ„ํ•œ ํ† ์ง€์ด์šฉ ์‹œ๋‚˜๋ฆฌ์˜ค๋ฅผ ๋ชจ์˜ํ•  ์ˆ˜ ์žˆ๋Š” ๊ณต๊ฐ„ ์ตœ์ ํ™” ๋ชจ๋ธ์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ๊ธฐํ›„๋ณ€ํ™”๊ฐ€ ๋จผ ๋ฏธ๋ž˜๊ฐ€ ์•„๋‹Œ, ํ˜„์žฌ ์ด๋ฏธ ์ง„ํ–‰๋˜๊ณ  ์žˆ์œผ๋ฉฐ ๊ด€๋ จํ•œ ๋‹ค์ˆ˜์˜ ํ”ผํ•ด๊ฐ€ ๊ด€์ฐฐ๋˜๊ณ  ์žˆ๊ธฐ ๋•Œ๋ฌธ์— ๊ณต๊ฐ„์  ๊ด€์ ์—์„œ ๊ธฐํ›„๋ณ€ํ™”์— ๋Œ€ํ•œ ์ ์‘์˜ ํ•„์š”์„ฑ์ด ์ง€์ ๋˜์–ด ์™”๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๊ตฌ์ฒด์ ์œผ๋กœ ๊ธฐํ›„์— ๋Œ€ํ•œ ํšŒ๋ณต ํƒ„๋ ฅ์„ฑ์„ ํ–ฅ์ƒ์‹œํ‚ค๊ธฐ ์œ„ํ•˜์—ฌ ํ† ์ง€์ด์šฉ์˜ ๊ณต๊ฐ„์  ๊ตฌ์„ฑ์„ ์–ด๋–ป๊ฒŒ ๋ณ€ํ™”์‹œ์ผœ์•ผ ํ• ์ง€์— ๋Œ€ํ•œ ๋ฐฉ๋ฒ•๋ก  ์ œ์‹œ๋Š” ๋ฏธํกํ•˜๋‹ค. ์ง€์—ญ๊ณ„ํš์—์„œ ๊ธฐํ›„๋ณ€ํ™” ์˜ํ–ฅ์„ ๊ณ ๋ คํ•œ ํ† ์ง€์ด์šฉ ๋ฐฐ๋ถ„์€ ๋งค์šฐ ์œ ์šฉํ•œ, ๊ธฐ๋ณธ์ ์ธ ์ค‘์žฅ๊ธฐ ์ ์‘ ์ „๋žต์— ํ•ด๋‹นํ•œ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๋‹ค๋ชฉ์  ์œ ์ „ ์•Œ๊ณ ๋ฆฌ์ฆ˜ (MOGA, multi-objective genetic algorithm)์— ๊ธฐ์ดˆํ•˜์—ฌ 9,982ใŽข์— 350๋งŒ์˜ ์ธ๊ตฌ๊ฐ€ ๊ฑฐ์ฃผํ•˜๋Š” ํ•œ๊ตญ์˜ ์ถฉ์ฒญ๋‚จ๋„ ๋ฐ ๋Œ€์ „๊ด‘์—ญ์‹œ ์ผ๋Œ€๋ฅผ ๋Œ€์ƒ์œผ๋กœ ๊ธฐํ›„๋ณ€ํ™” ์ ์‘์„ ์œ„ํ•œ ํ† ์ง€์ด์šฉ ์‹œ๋‚˜๋ฆฌ์˜ค๋ฅผ ์ œ์‹œํ•˜์˜€๋‹ค. ์ง€์—ญ์ ์ธ ๊ธฐํ›„๋ณ€ํ™” ์˜ํ–ฅ๊ณผ ๊ฒฝ์ œ์  ์—ฌ๊ฑด์„ ๊ณ ๋ คํ•˜์—ฌ ์žฌํ•ด ํ”ผํ•ด ๋ฐ ์ „ํ™˜๋Ÿ‰์˜ ์ตœ์†Œํ™”, ๋ฒผ ์ƒ์‚ฐ๋Ÿ‰, ์ข… ํ’๋ถ€๋„ ๋ณด์ „, ๊ฒฝ์ œ์  ๊ฐ€์น˜์˜ ์ตœ๋Œ€ํ™” ๋“ฑ ๋‹ค์„ฏ ๊ฐ€์ง€์˜ ๋ชฉ์ ์„ ์„ ํƒํ•˜์˜€๋‹ค. ๊ฐ ๋ชฉ์  ๋ณ„ ๊ฐ€์ค‘์น˜๋ฅผ ๋ณ€ํ™”์‹œํ‚ค๋ฉฐ ์—ฌ์„ฏ ๊ฐ€์ง€ ๊ฐ€์ค‘์น˜ ์กฐํ•ฉ์— ๋Œ€ํ•œ 17๊ฐœ์˜ ํŒŒ๋ ˆํ†  ์ตœ์  ํ† ์ง€์ด์šฉ ์‹œ๋‚˜๋ฆฌ์˜ค๋ฅผ ์ƒ์„ฑํ•˜์˜€๋‹ค. ๋Œ€๋ถ€๋ถ„์˜ ์‹œ๋‚˜๋ฆฌ์˜ค๋Š” ์ •๋„์˜ ์ฐจ์ด๋Š” ์žˆ์œผ๋‚˜ ํ˜„์žฌ์˜ ํ† ์ง€์ด์šฉ์— ๋น„ํ•ด ๊ธฐํ›„๋ณ€ํ™” ์ ์‘ ๋ถ€๋ถ„์—์„œ ๋” ์ข‹์€ ํผํฌ๋จผ์Šค๋ฅผ ๋ณด์˜€์œผ๋ฏ€๋กœ, ๊ธฐํ›„๋ณ€ํ™”์— ๋Œ€ํ•œ ํšŒ๋ณตํƒ„๋ ฅ์„ฑ์ด ๊ฐœ์„ ํ•  ์ˆ˜ ์žˆ์„ ๊ฒƒ์œผ๋กœ ํŒ๋‹จํ•˜์˜€๋‹ค. ๋˜ํ•œ ๊ณต๊ฐ„ ์ตœ์ ํ™” ๋ชจ๋ธ์˜ ์œ ์—ฐํ•œ ๊ตฌ์กฐ๋ฅผ ๊ณ ๋ คํ•˜์˜€์„ ๋•Œ, ์ง€์—ญ์˜ ์‹ค๋ฌด์ž ์—ญ์‹œ ๊ฐ€์ค‘์น˜์™€ ๊ฐ™์€ ๋ชจ๋ธ์˜ ํŒŒ๋ผ๋ฏธํ„ฐ, ๊ธฐํ›„๋ณ€ํ™” ์˜ํ–ฅ ํ‰๊ฐ€์™€ ๊ฐ™์€ ์ž…๋ ฅ์ž๋ฃŒ๋ฅผ ๋ณ€๊ฒฝํ•จ์œผ๋กœ์จ ํšจ์œจ์ ์œผ๋กœ ์ƒˆ๋กœ์šด ์‹œ๋‚˜๋ฆฌ์˜ค๋ฅผ ์ƒ์„ฑ ๋ฐ ์„ ํƒํ•˜๋Š” ๊ฒƒ์ด ๊ฐ€๋Šฅํ•  ๊ฒƒ์œผ๋กœ ์˜ˆ์ƒํ•˜์˜€๋‹ค. ๋…ผ๋ฌธ์˜ ๋‘ ๋ฒˆ์งธ ์žฅ์—์„œ๋Š” ํ–‰์ •๊ตฌ์—ญ ๊ตฐ ๊ทœ๋ชจ (local scale, ํ•ด์ƒ๋„ 100m)์—์„œ ๊ธฐํ›„๋ณ€ํ™”์— ๋”ฐ๋ฅธ ์žฌํ•ด ํ”ผํ•ด๋ฅผ ๊ด€๋ฆฌํ•˜๊ธฐ ์œ„ํ•œ ํ† ์ง€์ด์šฉ ์‹œ๋‚˜๋ฆฌ์˜ค๋ฅผ ๋ชจ์˜ํ•  ์ˆ˜ ์žˆ๋Š” ๊ณต๊ฐ„ ์ตœ์ ํ™” ๋ชจ๋ธ์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ์‚ฐ์•…์ง€ํ˜•์—์„œ ํญ์šฐ๋กœ ์ธํ•œ ์‚ฐ์‚ฌํƒœ๋Š” ์ธ๋ช…๊ณผ ์žฌ์‚ฐ์— ์‹ฌ๊ฐํ•œ ํ”ผํ•ด๋ฅผ ์ดˆ๋ž˜ํ•  ์ˆ˜ ์žˆ๋Š” ๊ฒƒ์œผ๋กœ ์•Œ๋ ค์ ธ ์žˆ๋‹ค. ๋”์šฑ์ด ๊ธฐํ›„๋ณ€ํ™”์— ๋”ฐ๋ฅธ ๊ฐ•์šฐ์˜ ๋ณ€๋™์„ฑ ์ฆ๊ฐ€๋กœ ์ด๋Ÿฌํ•œ ์‚ฐ์‚ฌํƒœ ๋นˆ๋„ ๋ฐ ๊ฐ•๋„ ์—ญ์‹œ ์ฆ๋Œ€๋  ๊ฒƒ์œผ๋กœ ์˜ˆ์ƒ๋œ๋‹ค. ์ผ๋ฐ˜์ ์œผ๋กœ ์‚ฐ์‚ฌํƒœ ๋ฆฌ์Šคํฌ๊ฐ€ ๋†’์€ ์ง€์—ญ์„ ํ”ผํ•ด ๊ฐœ๋ฐœ์ง€์—ญ์„ ๋ฐฐ์น˜ํ•˜๋Š” ๊ฒƒ์ด ํ”ผํ•ด๋ฅผ ์ €๊ฐ ํ˜น์€ ํšŒํ”ผํ•  ์ˆ˜ ์žˆ๋Š” ๊ฐ€์žฅ ํšจ๊ณผ์ ์ธ ์ „๋žต์œผ๋กœ ์•Œ๋ ค์ ธ ์žˆ์œผ๋‚˜, ์‹ค์ œ๊ณต๊ฐ„์—์„œ์˜ ๊ณ„ํš์€ ๋งค์šฐ ๋ณต์žกํ•œ ๋น„์„ ํ˜•์˜ ๋ฌธ์ œ๋กœ์„œ ์ด๊ฒƒ์„ ์‹คํ˜„ํ•˜๋Š” ๋ฐ ์–ด๋ ค์›€์ด ์žˆ๋‹ค. ๋”ฐ๋ผ์„œ ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๋น„์ง€๋ฐฐ ์ •๋ ฌ ์œ ์ „ ์•Œ๊ณ ๋ฆฌ์ฆ˜ II์— ๊ธฐ์ดˆํ•˜์—ฌ ์‚ฐ์‚ฌํƒœ ๋ฆฌ์Šคํฌ ๋ฐ ์ „ํ™˜๋Ÿ‰, ํŒŒํŽธํ™”์˜ ์ตœ์†Œํ™” ๋“ฑ์˜ ๋‹ค์–‘ํ•œ ๋ชฉ์ ์„ ๋งŒ์กฑ์‹œํ‚ค๋Š” ์ข…ํ•ฉ์ ์ธ ํ† ์ง€์ด์šฉ ๋ฐฐ๋ถ„ ๊ณ„ํš์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ๋Œ€์ƒ์ง€๋Š” 2018๋…„ ๋™๊ณ„์˜ฌ๋ฆผํ”ฝ ๊ฐœ์ตœ์ง€์ธ ํ•œ๊ตญ์˜ ํ‰์ฐฝ๊ตฐ์œผ๋กœ์„œ 2006๋…„์— ์‚ฐ์‚ฌํƒœ๋กœ ์ธํ•œ ๋Œ€๊ทœ๋ชจ์˜ ํ”ผํ•ด๋ฅผ ๊ฒฝํ—˜ํ•˜์˜€์œผ๋‚˜, ์˜ฌ๋ฆผํ”ฝ ํŠน์ˆ˜ ๋“ฑ์˜ ๊ฐœ๋ฐœ์••๋ ฅ์œผ๋กœ ์ธํ•œ ๋‚œ๊ฐœ๋ฐœ์ด ์šฐ๋ ค๋˜๋Š” ์ง€์—ญ์ด๋‹ค. ์ตœ์ข…์ ์œผ๋กœ ํ•œ๋ฒˆ์˜ ๋ชจ์˜๋ฅผ ํ†ตํ•ด ํ˜„์žฌ์˜ ํ† ์ง€์ด์šฉ ๋ณด๋‹ค ์ ์–ด๋„ ํ•œ๊ฐ€์ง€ ์ด์ƒ์˜ ๋ชฉ์ ์—์„œ ์ข‹์€ ํผํฌ๋จผ์Šค๋ฅผ ๋ณด์ด๋Š” 100๊ฐœ์˜ ํŒŒ๋ ˆํ†  ์ตœ์  ๊ณ„ํš์•ˆ์„ ์ƒ์„ฑํ•˜์˜€๋‹ค. ๋˜ํ•œ 5๊ฐœ์˜ ๋Œ€ํ‘œ์ ์ธ ๊ณ„ํš์•ˆ์„ ์„ ์ •ํ•˜์—ฌ ์‚ฐ์‚ฌํƒœ๋ฆฌ์Šคํฌ ์ตœ์†Œํ™”์™€ ์ „ํ™˜๋Ÿ‰ ์ตœ์†Œํ™” ๊ฐ„์— ๋ฐœ์ƒํ•˜๋Š” ์ƒ์‡„ ํšจ๊ณผ๋ฅผ ์„ค๋ช…ํ•˜์˜€๋‹ค. ๋ณธ ์—ฐ๊ตฌ๊ฒฐ๊ณผ๋Š” ๊ธฐํ›„๋ณ€ํ™”์™€ ๊ด€๋ จ๋œ ๊ณต๊ฐ„ ์ ์‘ ์ „๋žต์˜ ์ˆ˜๋ฆฝ, ๋ณด๋‹ค ํ–ฅ์ƒ๋œ ๊ฐœ๋ฐœ๊ณ„ํš์„ ์œ„ํ•œ ์˜์‚ฌ๊ฒฐ์ •์„ ํšจ๊ณผ์ ์œผ๋กœ ์ง€์›ํ•  ์ˆ˜ ์žˆ์„ ๊ฒƒ์œผ๋กœ ์˜ˆ์ƒํ•˜์˜€๋‹ค. ๋…ผ๋ฌธ์˜ ์„ธ ๋ฒˆ์งธ ์žฅ์—์„œ๋Š” ๋ธ”๋ก ๊ทœ๋ชจ(neighborhood scale, 2m)์—์„œ ๋„์‹œ ๋‚ด ๋…น์ง€๊ณ„ํš์•ˆ์„ ๋ชจ์˜ํ•  ์ˆ˜ ์žˆ๋Š” ๊ณต๊ฐ„ ์ตœ์ ํ™” ๋ชจ๋ธ์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ๋…น์ง€ ๊ณต๊ฐ„์€ ๋„์‹œ๋ฏผ์˜ ์‚ถ์˜ ์งˆ์— ๊ฒฐ์ •์ ์ธ ์˜ํ–ฅ์„ ๋ฏธ์น˜๊ธฐ ๋•Œ๋ฌธ์— ๋‹ค์–‘ํ•œ ๋„์‹œ ์žฌ์ƒ ๋ฐ ๊ฐœ๋ฐœ๊ณ„ํš์—๋Š” ๋…น์ง€์™€ ์ง ๊ฐ„์ ‘์ ์œผ๋กœ ๊ด€๋ จ๋œ ์ „๋žต์ด ํฌํ•จ๋œ๋‹ค. ๋…น์ง€ ๊ณต๊ฐ„์€ ๋„์‹œ์ง€์—ญ ๋‚ด์—์„œ ์—ด์„ฌ ํ˜„์ƒ ์™„ํ™”, ์œ ์ถœ๋Ÿ‰ ์ €๊ฐ, ์ƒํƒœ ๋„คํŠธ์›Œํฌ ์ฆ์ง„ ๋“ฑ ๋‹ค์–‘ํ•œ ๊ธ์ •์  ํšจ๊ณผ๊ฐ€ ์žˆ์Œ์ด ์•Œ๋ ค์ ธ ์žˆ์œผ๋‚˜, ๊ณต๊ฐ„ ๊ณ„ํš์˜ ๊ด€์ ์—์„œ ์ด๋Ÿฌํ•œ ๋‹ค์–‘ํ•œ ํšจ๊ณผ๋ฅผ ์ข…ํ•ฉ์ , ์ •๋Ÿ‰์ ์œผ๋กœ ๊ณ ๋ ค๋œ ์‚ฌ๋ก€๋Š” ๋งค์šฐ ๋ฏธํกํ•˜๋‹ค. ๋”ฐ๋ผ์„œ ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๋น„์ง€๋ฐฐ ์ •๋ ฌ ์œ ์ „ ์•Œ๊ณ ๋ฆฌ์ฆ˜ II์— ๊ธฐ์ดˆํ•˜์—ฌ ๋…น์ง€์˜ ์ƒํƒœ์  ์—ฐ๊ฒฐ์„ฑ ์ฆ์ง„, ์—ด์„ฌ ํšจ๊ณผ ์™„ํ™”์™€ ๊ฐ™์€ ๋‹ค์–‘ํ•œ ํšจ๊ณผ์™€ ์„ค์น˜์— ๋”ฐ๋ฅด๋Š” ๋น„์šฉ์„ ์ข…ํ•ฉ์ ์œผ๋กœ ๊ณ ๋ คํ•˜์—ฌ ์ ์ ˆํ•œ ๋…น์ง€์˜ ์œ ํ˜•๊ณผ ์œ„์น˜๋ฅผ ๊ฒฐ์ •ํ•œ ๋…น์ง€๊ณ„ํš์•ˆ์„ ์ œ์‹œํ•˜์˜€๋‹ค. ๋ธ”๋ก ๊ทœ๋ชจ์˜ ๊ฐ€์ƒ์˜ ๋Œ€์ƒ์ง€์— ๋ณธ ์ตœ์ ํ™” ๋ชจ๋ธ์„ ์ ์šฉํ•จ์œผ๋กœ์จ 30๊ฐœ์˜ ํŒŒ๋ ˆํ†  ์ตœ์  ๋…น์ง€๊ณ„ํš์•ˆ์„ ์ƒ์„ฑํ•˜์˜€์œผ๋ฉฐ, ๊ฐ ๋ชฉ์  ๊ฐ„ ํผํฌ๋จผ์Šค๋ฅผ ๋น„๊ตํ•˜์—ฌ ๋…น์ง€์˜ ์—ด์„ฌ ์™„ํ™” ํšจ๊ณผ์™€ ์ƒํƒœ์  ์—ฐ๊ฒฐ์„ฑ ์ฆ์ง„ ํšจ๊ณผ ๊ฐ„์˜ ์ƒ์Šน ๊ด€๊ณ„ (synergistic relationship), ์ด๋Ÿฌํ•œ ๊ธ์ •์  ํšจ๊ณผ์™€ ๋น„์šฉ ์ ˆ๊ฐ ๊ฐ„์˜ ์ƒ์‡„ ํšจ๊ณผ (trade-off relationship)๋ฅผ ๋ถ„์„ํ•˜์˜€๋‹ค. ๋˜ํ•œ ๋‹ค์–‘ํ•œ ๊ณ„ํš์•ˆ ์ค‘ ๋Œ€ํ‘œ์ ์ธ ํŠน์„ฑ์„ ์ง€๋‹ˆ๋Š” ๊ณ„ํš์•ˆ, ๋‹ค์ˆ˜์˜ ๊ณ„ํš์•ˆ์—์„œ ๊ณตํ†ต์ ์œผ๋กœ ๋…น์ง€ ์„ค์น˜๋ฅผ ์œ„ํ•ด ์„ ํƒ๋œ ์ฃผ์š” ํ›„๋ณด์ง€์—ญ ์—ญ์‹œ ๊ทœ๋ช…ํ•˜์˜€๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ ์ œ์‹œ๋œ ๋ชจ๋ธ์€ ๊ณ„ํš์•ˆ์˜ ์ˆ˜์ •์—์„œ๋ถ€ํ„ฐ ์ •๋Ÿ‰์  ํ‰๊ฐ€, ๊ณ„ํš์•ˆ ์„ ํƒ์— ์ด๋ฅด๋Š” ์ผ๋ จ์˜ ๊ธ์ •์ ์ธ ํ”ผ๋“œ๋ฐฑ ๊ณผ์ •์„ ์ˆ˜์—†์ด ๋ฐ˜๋ณตํ•จ์œผ๋กœ์จ ๊ธฐ์กด์˜ ๋…น์ง€๊ณ„ํš ๊ณผ์ •์„ ๊ฐœ์„ ํ•˜๋Š” ๋ฐ ๊ธฐ์—ฌํ•  ์ˆ˜ ์žˆ์„ ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ๋ชจ๋ธ์˜ ๊ฒฐ๊ณผ ์—ญ์‹œ ๋‹ค์ž๊ฐ„ ํ˜‘๋ ฅ์  ๋””์ž์ธ (co-design)์„ ์œ„ํ•œ ์ดˆ์•ˆ์œผ๋กœ์„œ ํ™œ์šฉ๋  ์ˆ˜ ์žˆ์„ ๊ฒƒ์œผ๋กœ ์˜ˆ์ƒํ•˜์˜€๋‹ค.The meeting of heterogeneous goals while staying within the constraints of spatial planning is a nonlinear problem that cannot be solved by linear methodologies. Instead, this problem can be solved using multi-objective optimization algorithms such as genetic algorithms (GA), simulated annealing (SA), ant colony optimization (ACO), etc., and research related to this field has been increasing rapidly. GA, in particular, are the most frequently applied spatial optimization algorithms and are known to search for a good solution within a reasonable time period by maintaining a balance between exploration and exploitation. However, despite its good performance and applicability, it has not adequately addressed recent urgent issues such as climate change adaptation, disaster management, and green infrastructure planning. It is criticized for concentrating on only the allocation of specific land use such as urban and protected areas, or on the site selection of a specific facility. Therefore, in this study, a series of spatial optimizations are proposed to address recent urgent issues such as climate change, disaster management, and urban greening by supplementing quantitative assessment methodologies to the spatial planning process based on GA and Non-dominated Sorting Genetic Algorithm II (NSGA II). This optimization model needs to be understood as a tool for providing a draft plan that quantitatively meets the essential requirements so that the stakeholders can collaborate smoothly in the planning process. Three types of spatial planning optimization models are classified according to urgent issues. Spatial resolution, planning objectives, and constraints were also configured differently according to relevant issues. Each spatial planning optimization model was arranged in the order of increasing spatial resolution. In the first chapter, the optimization model was proposed to simulate land use scenarios to adapt to climate change on a provincial scale. As climate change is an ongoing phenomenon, many recent studies have focused on adaptation to climate change from a spatial perspective. However, little is known about how changing the spatial composition of land use could improve resilience to climate change. Consideration of climate change impacts when spatially allocating land use could be a useful and fundamental long-term adaptation strategy, particularly for regional planning. Here climate adaptation scenarios were identified on the basis of existing extents of three land use classes using Multi-objective Genetic Algorithms (MOGA) for a 9,982 km2 region with 3.5 million inhabitants in South Korea. Five objectives were selected for adaptation based on predicted climate change impacts and regional economic conditions: minimization of disaster damageand existing land use conversionmaximization of rice yieldprotection of high-species-richness areasand economic value. The 17 Pareto land use scenarios were generated by six weighted combinations of the adaptation objectives. Most scenarios, although varying in magnitude, showed better performance than the current spatial land use composition for all adaptation objectives, suggesting that some alteration of current land use patterns could increase overall climate resilience. Given the flexible structure of the optimization model, it is expected that regional stakeholders would efficiently generate other scenarios by adjusting the model parameters (weighting combinations) or replacing the input data (impact maps) and selecting a scenario depending on their preference or a number of problem-related factors. In the second chapter, the optimization model was proposed to simulate land use scenarios for managing disaster damage due to climate change on local scale. Extreme landslides triggered by rainfall in hilly regions frequently lead to serious damage, including casualties and property loss. The frequency of landslides may increase under climate change, because of the increased variability of precipitation. Developing urban areas outside landslide risk zones is the most effective method of reducing or preventing damageplanning in real life is, however, a complex and nonlinear problem. For such multi-objective problems, GA may be the most appropriate optimization tool. Therefore, comprehensive land use allocation plans were suggested using the NSGA II to overcome multi-objective problems, including the minimization of landslide risk, minimization of change, and maximization of compactness. The study area is Pyeongchang-gun, the host city of the 2018 Winter Olympics in Korea, where high development pressure has resulted in an urban sprawl into the hazard zone that experienced a large-scale landslide in 2006. We obtained 100 Pareto plans that are better than the actual land use data for at least one objective, with five plans that explain the trade-offs between meeting the first and the second objectives mentioned above. The results can be used by decision makers for better urban planning and for climate change-related spatial adaptation. In the third chapter, the optimization model was proposed to simulate urban greening plans on a neighborhood scale. Green space is fundamental to the good quality of life of residents, and therefore urban planning or improvement projects often include strategies directly or indirectly related to greening. Although green spaces generate positive effects such as cooling and reduction of rainwater runoff, and are an ecological corridor, few studies have examined the comprehensive multiple effects of greening in the urban planning context. To fill this gap in this fields literature, this study seeks to identify a planning model that determines the location and type of green cover based on its multiple effects (e.g., cooling and enhancement of ecological connectivity) and the implementation cost using NSGA II. The 30 Pareto-optimal plans were obtained by applying our model to a hypothetical landscape on a neighborhood scale. The results showed a synergistic relationship between cooling and enhancement of connectivity, as well as a trade-off relationship between greenery effects and implementation cost. It also defined critical lots for urban greening that are commonly selected in various plans. This model is expected to contribute to the improvement of existing planning processes by repeating the positive feedback loop: from plan modification to quantitative evaluation and selection of better plans. These optimal plans can also be considered as options for co-design by related stakeholders.1. INTRODUCTION 2. CHAPTER 1: Modelling Spatial Climate Change Land use Adaptation with Multi-Objective Genetic Algorithms to Improve Resilience for Rice Yield and Species Richness and to Mitigate Disaster Risk 2.1. Introduction 2.2. Study area 2.3. Methods 2.4. Results 2.5. Discussion 2.6. References 2.7. Supplemental material 3. CHAPTER 2: Multi-Objective Land-Use Allocation Considering Landslide Risk under Climate Change: Case Study in Pyeongchang-gun, Korea 3.1. Introduction 3.2. Material and Methods 3.3. Results 3.4. Discussion 3.5. Conclusion 3.6. References 4. CHAPTER 3: Multi-Objective Planning Model for Urban Greening based on Optimization Algorithms 3.1. Introduction 3.2. Methods 3.3. Results 3.4. Discussion 3.5. Conclusion 3.6. References 3.7. Appendix 5. CONCLUSION REFERENCESDocto

    Inferring efficient operating rules in multireservoir water resource systems: A review

    Full text link
    [EN] Coordinated and efficient operation of water resource systems becomes essential to deal with growing demands and uncertain resources in water-stressed regions. System analysis models and tools help address the complexities of multireservoir systems when defining operating rules. This paper reviews the state of the art in developing operating rules for multireservoir water resource systems, focusing on efficient system operation. This review focuses on how optimal operating rules can be derived and represented. Advantages and drawbacks of each approach are discussed. Major approaches to derive optimal operating rules include direct optimization of reservoir operation, embedding conditional operating rules in simulation-optimization frameworks, and inferring rules from optimization results. Suggestions on which approach to use depend on context. Parametrization-simulation-optimization or rule inference using heuristics are promising approaches. Increased forecasting capabilities will further benefit the use of model predictive control algorithms to improve system operation. This article is categorized under: Engineering Water > Water, Health, and Sanitation Engineering Water > MethodsThe study has been partially funded by the ADAPTAMED project (RTI2018-101483-B-I00) from the Ministerio de Ciencia, Innovacion Universidades (MICINN) of Spain, and by the postdoctoral program (PAID-10-18) of the Universitat Politecnica de Valencia (UPV).Macian-Sorribes, H.; Pulido-Velazquez, M. (2019). Inferring efficient operating rules in multireservoir water resource systems: A review. Wiley Interdisciplinary Reviews Water. 7(1):1-24. https://doi.org/10.1002/wat2.1400S12471Aboutalebi, M., Bozorg Haddad, O., & Loรกiciga, H. A. (2015). Optimal Monthly Reservoir Operation Rules for Hydropower Generation Derived with SVR-NSGAII. Journal of Water Resources Planning and Management, 141(11), 04015029. doi:10.1061/(asce)wr.1943-5452.0000553Ahmad, A., El-Shafie, A., Razali, S. F. M., & Mohamad, Z. S. (2014). Reservoir Optimization in Water Resources: a Review. Water Resources Management, 28(11), 3391-3405. doi:10.1007/s11269-014-0700-5Ahmadi, M., Bozorg Haddad, O., & Mariรฑo, M. A. (2013). Extraction of Flexible Multi-Objective Real-Time Reservoir Operation Rules. Water Resources Management, 28(1), 131-147. doi:10.1007/s11269-013-0476-zAndreu, J., Capilla, J., & Sanchรญs, E. (1996). AQUATOOL, a generalized decision-support system for water-resources planning and operational management. Journal of Hydrology, 177(3-4), 269-291. doi:10.1016/0022-1694(95)02963-xAndreu, J., & Sahuquillo, A. (1987). Efficient Aquifer Simulation in Complex Systems. Journal of Water Resources Planning and Management, 113(1), 110-129. doi:10.1061/(asce)0733-9496(1987)113:1(110)Ashbolt, S. C., Maheepala, S., & Perera, B. J. C. (2016). Using Multiobjective Optimization to Find Optimal Operating Rules for Short-Term Planning of Water Grids. Journal of Water Resources Planning and Management, 142(10), 04016033. doi:10.1061/(asce)wr.1943-5452.0000675Ashbolt, S. C., & Perera, B. J. C. (2018). Multiobjective Optimization of Seasonal Operating Rules for Water Grids Using Streamflow Forecast Information. Journal of Water Resources Planning and Management, 144(4), 05018003. doi:10.1061/(asce)wr.1943-5452.0000902Azari, A., Hamzeh, S., & Naderi, S. (2018). Multi-Objective Optimization of the Reservoir System Operation by Using the Hedging Policy. Water Resources Management, 32(6), 2061-2078. doi:10.1007/s11269-018-1917-5Becker, L., & Yeh, W. W.-G. (1974). Optimization of real time operation of a multiple-reservoir system. Water Resources Research, 10(6), 1107-1112. doi:10.1029/wr010i006p01107Bellman, R. E., & Dreyfus, S. E. (1962). Applied Dynamic Programming. doi:10.1515/9781400874651Ben-Tal, A., El Ghaoui, L., & Nemirovski, A. (2009). Robust Optimization. doi:10.1515/9781400831050Bessler, F. T., Savic, D. A., & Walters, G. A. (2003). Water Reservoir Control with Data Mining. Journal of Water Resources Planning and Management, 129(1), 26-34. doi:10.1061/(asce)0733-9496(2003)129:1(26)Bhaskar, N. R., & Whitlatch, E. E. (1980). Derivation of monthly reservoir release policies. Water Resources Research, 16(6), 987-993. doi:10.1029/wr016i006p00987Bianucci, P., Sordo-Ward, ร., Moralo, J., & Garrote, L. (2015). Probabilistic-Multiobjective Comparison of User-Defined Operating Rules. Case Study: Hydropower Dam in Spain. Water, 7(12), 956-974. doi:10.3390/w7030956Biglarbeigi, P., Giuliani, M., & Castelletti, A. (2018). Partitioning the Impacts of Streamflow and Evaporation Uncertainty on the Operations of Multipurpose Reservoirs in Arid Regions. Journal of Water Resources Planning and Management, 144(7), 05018008. doi:10.1061/(asce)wr.1943-5452.0000945Bolouri-Yazdeli, Y., Bozorg Haddad, O., Fallah-Mehdipour, E., & Mariรฑo, M. A. (2014). Evaluation of Real-Time Operation Rules in Reservoir Systems Operation. Water Resources Management, 28(3), 715-729. doi:10.1007/s11269-013-0510-1Borgomeo, E., Mortazavi-Naeini, M., Hall, J. W., Oโ€™Sullivan, M. J., & Watson, T. (2016). Trading-off tolerable risk with climate change adaptation costs in water supply systems. Water Resources Research, 52(2), 622-643. doi:10.1002/2015wr018164Bozorg-Haddad, O., Azarnivand, A., Hosseini-Moghari, S.-M., & Loรกiciga, H. A. (2017). WASPAS Application and Evolutionary Algorithm Benchmarking in Optimal Reservoir Optimization Problems. Journal of Water Resources Planning and Management, 143(1), 04016070. doi:10.1061/(asce)wr.1943-5452.0000716Bozorg-Haddad, O., Karimirad, I., Seifollahi-Aghmiuni, S., & Loรกiciga, H. A. (2015). Development and Application of the Bat Algorithm for Optimizing the Operation of Reservoir Systems. Journal of Water Resources Planning and Management, 141(8), 04014097. doi:10.1061/(asce)wr.1943-5452.0000498Breiman, L. (2001). Machine Learning, 45(1), 5-32. doi:10.1023/a:1010933404324Brown, C., Ghile, Y., Laverty, M., & Li, K. (2012). Decision scaling: Linking bottom-up vulnerability analysis with climate projections in the water sector. Water Resources Research, 48(9). doi:10.1029/2011wr011212Brown, C. M., Lund, J. R., Cai, X., Reed, P. M., Zagona, E. A., Ostfeld, A., โ€ฆ Brekke, L. (2015). The future of water resources systems analysis: Toward a scientific framework for sustainable water management. Water Resources Research, 51(8), 6110-6124. doi:10.1002/2015wr017114Cai, X., McKinney, D. C., & Lasdon, L. S. (2001). Piece-by-Piece Approach to Solving Large Nonlinear Water Resources Management Models. Journal of Water Resources Planning and Management, 127(6), 363-368. doi:10.1061/(asce)0733-9496(2001)127:6(363)Cai, X., Vogel, R., & Ranjithan, R. (2013). Special Issue on the Role of Systems Analysis in Watershed Management. Journal of Water Resources Planning and Management, 139(5), 461-463. doi:10.1061/(asce)wr.1943-5452.0000341Cancelliere, A., Giuliano, G., Ancarani, A., & Rossi, G. (2002). Water Resources Management, 16(1), 71-88. doi:10.1023/a:1015563820136Caseri, A., Javelle, P., Ramos, M. H., & Leblois, E. (2015). Generating precipitation ensembles for flood alert and risk management. Journal of Flood Risk Management, 9(4), 402-415. doi:10.1111/jfr3.12203Castelletti, A., Galelli, S., Restelli, M., & Soncini-Sessa, R. (2010). Tree-based reinforcement learning for optimal water reservoir operation. Water Resources Research, 46(9). doi:10.1029/2009wr008898Castelletti, A., Pianosi, F., & Restelli, M. (2013). A multiobjective reinforcement learning approach to water resources systems operation: Pareto frontier approximation in a single run. Water Resources Research, 49(6), 3476-3486. doi:10.1002/wrcr.20295Castelletti, A., Pianosi, F., & Soncini-Sessa, R. (2008). Water reservoir control under economic, social and environmental constraints. Automatica, 44(6), 1595-1607. doi:10.1016/j.automatica.2008.03.003Castelletti, A., & Soncini-Sessa, R. (2007). Bayesian networks in water resource modelling and management. Environmental Modelling & Software, 22(8), 1073-1074. doi:10.1016/j.envsoft.2006.06.001Castelletti, A., & Soncini-Sessa, R. (2007). Bayesian Networks and participatory modelling in water resource management. Environmental Modelling & Software, 22(8), 1075-1088. doi:10.1016/j.envsoft.2006.06.003Celeste, A. B., & Billib, M. (2009). Evaluation of stochastic reservoir operation optimization models. Advances in Water Resources, 32(9), 1429-1443. doi:10.1016/j.advwatres.2009.06.008Celeste, A. B., Curi, W. F., & Curi, R. C. (2009). Implicit Stochastic Optimization for deriving reservoir operating rules in semiarid Brazil. Pesquisa Operacional, 29(1), 223-234. doi:10.1590/s0101-74382009000100011Chandramouli, V., & Raman, H. (2001). Multireservoir Modeling with Dynamic Programming and Neural Networks. Journal of Water Resources Planning and Management, 127(2), 89-98. doi:10.1061/(asce)0733-9496(2001)127:2(89)Chang, L.-C., & Chang, F.-J. (2001). Intelligent control for modelling of real-time reservoir operation. Hydrological Processes, 15(9), 1621-1634. doi:10.1002/hyp.226Chazarra, M., Garcรญa-Gonzรกlez, J., Pรฉrez-Dรญaz, J. I., & Arteseros, M. (2016). Stochastic optimization model for the weekly scheduling of a hydropower system in day-ahead and secondary regulation reserve markets. Electric Power Systems Research, 130, 67-77. doi:10.1016/j.epsr.2015.08.014Chen, D., Leon, A. S., Fuentes, C., Gibson, N. L., & Qin, H. (2018). Incorporating Filters in Random Search Algorithms for the Hourly Operation of a Multireservoir System. Journal of Water Resources Planning and Management, 144(2), 04017088. doi:10.1061/(asce)wr.1943-5452.0000876Coerver, H. M., Rutten, M. M., & van de Giesen, N. C. (2018). Deduction of reservoir operating rules for application in global hydrological models. Hydrology and Earth System Sciences, 22(1), 831-851. doi:10.5194/hess-22-831-2018Cรดtรฉ, P., & Leconte, R. (2016). Comparison of Stochastic Optimization Algorithms for Hydropower Reservoir Operation with Ensemble Streamflow Prediction. Journal of Water Resources Planning and Management, 142(2), 04015046. doi:10.1061/(asce)wr.1943-5452.0000575Cui, L., & Kuczera, G. (2005). Optimizing water supply headworks operating rules under stochastic inputs: Assessment of genetic algorithm performance. Water Resources Research, 41(5). doi:10.1029/2004wr003517Culley, S., Noble, S., Yates, A., Timbs, M., Westra, S., Maier, H. R., โ€ฆ Castelletti, A. (2016). A bottom-up approach to identifying the maximum operational adaptive capacity of water resource systems to a changing climate. Water Resources Research, 52(9), 6751-6768. doi:10.1002/2015wr018253Cunha, M. C., & Antunes, A. (2012). Simulated annealing algorithms for water systems optimization. WIT Transactions on State of the Art in Science and Engineering, 57-73. doi:10.2495/978-1-84564-664-6/04Dariane, A. B., & Momtahen, S. (2009). Optimization of Multireservoir Systems Operation Using Modified Direct Search Genetic Algorithm. Journal of Water Resources Planning and Management, 135(3), 141-148. doi:10.1061/(asce)0733-9496(2009)135:3(141)Das, B., Singh, A., Panda, S. N., & Yasuda, H. (2015). Optimal land and water resources allocation policies for sustainable irrigated agriculture. Land Use Policy, 42, 527-537. doi:10.1016/j.landusepol.2014.09.012Davidsen, C., Liu, S., Mo, X., Rosbjerg, D., & Bauer-Gottwein, P. (2016). The cost of ending groundwater overdraft on the North China Plain. Hydrology and Earth System Sciences, 20(2), 771-785. doi:10.5194/hess-20-771-2016Ehteram, M., Karami, H., & Farzin, S. (2018). Reservoir Optimization for Energy Production Using a New Evolutionary Algorithm Based on Multi-Criteria Decision-Making Models. Water Resources Management, 32(7), 2539-2560. doi:10.1007/s11269-018-1945-1Eisel, L. M. (1972). Chance constrained reservoir model. Water Resources Research, 8(2), 339-347. doi:10.1029/wr008i002p00339European Commission(2007). Communication from the Commission to the European Parliament and the Council: Addressing the challenge of water scarcity and droughts in the European Union COM(2007) 414 final. Brussels Belgium.European Commission. (2012a). Communication from the Commission to the European Parliament the Council the European Economic and Social Committee and the Committee of the Regions: A Blueprint to Safeguard Europe's Water Resources COM(2012) 673 final. Brussels Belgium.European Commission. (2012b). Communication from the Commission to the European Parliament the Council the European Economic and Social Committee and the Committee of the Regions: Report on the Review of the European Water Scarcity and Droughts Policy COM(2012) 672 final. Brussels Belgium.Fallah-Mehdipour, E., Bozorg Haddad, O., & Mariรฑo, M. A. (2012). Real-Time Operation of Reservoir System by Genetic Programming. Water Resources Management, 26(14), 4091-4103. doi:10.1007/s11269-012-0132-zFazlali, A., & Shourian, M. (2017). A Demand Management Based Crop and Irrigation Planning Using the Simulation-Optimization Approach. Water Resources Management, 32(1), 67-81. doi:10.1007/s11269-017-1791-6Ficchรฌ, A., Raso, L., Dorchies, D., Pianosi, F., Malaterre, P.-O., Van Overloop, P.-J., & Jay-Allemand, M. (2016). Optimal Operation of the Multireservoir System in the Seine River Basin Using Deterministic and Ensemble Forecasts. Journal of Water Resources Planning and Management, 142(1), 05015005. doi:10.1061/(asce)wr.1943-5452.0000571Fu, Q., Li, T., Cui, S., Liu, D., & Lu, X. (2017). Agricultural Multi-Water Source Allocation Model Based on Interval Two-Stage Stochastic Robust Programming under Uncertainty. Water Resources Management, 32(4), 1261-1274. doi:10.1007/s11269-017-1868-2Galelli, S., Goedbloed, A., Schwanenberg, D., & van Overloop, P.-J. (2014). Optimal Real-Time Operation of Multipurpose Urban Reservoirs: Case Study in Singapore. Journal of Water Resources Planning and Management, 140(4), 511-523. doi:10.1061/(asce)wr.1943-5452.0000342Giuliani, M., Castelletti, A., Pianosi, F., Mason, E., & Reed, P. M. (2016). Curses, Tradeoffs, and Scalable Management: Advancing Evolutionary Multiobjective Direct Policy Search to Improve Water Reservoir Operations. Journal of Water Resources Planning and Management, 142(2), 04015050. doi:10.1061/(asce)wr.1943-5452.0000570Giuliani, M., Herman, J. D., Castelletti, A., & Reed, P. (2014). Many-objective reservoir policy identification and refinement to reduce policy inertia and myopia in water management. Water Resources Research, 50(4), 3355-3377. doi:10.1002/2013wr014700Giuliani, M., Li, Y., Castelletti, A., & Gandolfi, C. (2016). A coupled human-natural systems analysis of irrigated agriculture under changing climate. Water Resources Research, 52(9), 6928-6947. doi:10.1002/2016wr019363Giuliani, M., Quinn, J. D., Herman, J. D., Castelletti, A., & Reed, P. M. (2018). Scalable Multiobjective Control for Large-Scale Water Resources Systems Under Uncertainty. IEEE Transactions on Control Systems Technology, 26(4), 1492-1499. doi:10.1109/tcst.2017.2705162Grรผne, L., & Semmler, W. (2004). Using dynamic programming with adaptive grid scheme for optimal control problems in economics. Journal of Economic Dynamics and Control, 28(12), 2427-2456. doi:10.1016/j.jedc.2003.11.002Guariso, G., Rinaldi, S., & Soncini-Sessa, R. (1986). The Management of Lake Como: A Multiobjective Analysis. Water Resources Research, 22(2), 109-120. doi:10.1029/wr022i002p00109Gundelach, J., & ReVelle, C. (1975). Linear decision rule in reservoir management and design: 5. A general algorithm. Water Resources Research, 11(2), 204-207. doi:10.1029/wr011i002p00204Guo, X., Hu, T., Zeng, X., & Li, X. (2013). Extension of Parametric Rule with the Hedging Rule for Managing Multireservoir System during Droughts. Journal of Water Resources Planning and Management, 139(2), 139-148. doi:10.1061/(asce)wr.1943-5452.0000241Haddad, O. B., Afshar, A., & Mariรฑo, M. A. (2006). Honey-Bees Mating Optimization (HBMO) Algorithm: A New Heuristic Approach for Water Resources Optimization. Water Resources Management, 20(5), 661-680. doi:10.1007/s11269-005-9001-3Hadka, D., Herman, J., Reed, P., & Keller, K. (2015). An open source framework for many-objective robust decision making. Environmental Modelling & Software, 74, 114-129. doi:10.1016/j.envsoft.2015.07.014Haguma, D., & Leconte, R. (2018). Long-Term Planning of Water Systems in the Context of Climate Non-Stationarity with Deterministic and Stochastic Optimization. Water Resources Management, 32(5), 1725-1739. doi:10.1007/s11269-017-1900-6Haguma, D., Leconte, R., & Cรดtรฉ, P. (2018). Evaluating Transition Probabilities for a Stochastic Dynamic Programming Model Used in Water System Optimization. Journal of Water Resources Planning and Management, 144(2), 04017090. doi:10.1061/(asce)wr.1943-5452.0000883Houck, M. H. (1979). A Chance Constrained Optimization Model for reservoir design and operation. Water Resources Research, 15(5), 1011-1016. doi:10.1029/wr015i005p01011Ji, C., Zhou, T., & Huang, H. (2014). Operating Rules Derivation of Jinsha Reservoirs System with Parameter Calibrated Support Vector Regression. Water Resources Management, 28(9), 2435-2451. doi:10.1007/s11269-014-0610-6Karamouz, M., & Houck, M. H. (1982). Annual and monthly reservoir operating rules generated by deterministic optimization. Water Resources Research, 18(5), 1337-1344. doi:10.1029/wr018i005p01337Karamouz, M., & Houck, M. H. (1987). COMPARISON OF STOCHASTIC AND DETERMINISTIC DYNAMIC PROGRAMMING FOR RESERVOIR OPERATING RULE GENERATION. Journal of the American Water Resources Association, 23(1), 1-9. doi:10.1111/j.1752-1688.1987.tb00778.xKaramouz, M., & Vasiliadis, H. V. (1992). Bayesian stochastic optimization of reservoir operation using uncertain forecasts. Water Resources Research, 28(5), 1221-1232. doi:10.1029/92wr00103Kasprzyk, J. R., Nataraj, S., Reed, P. M., & Lempert, R. J. (2013). Many objective robust decision making for complex environmental systems undergoing change. Environmental Modelling & Software, 42, 55-71. doi:10.1016/j.envsoft.2012.12.007Kelman, J., Stedinger, J. R., Cooper, L. A., Hsu, E., & Yuan, S.-Q. (1990). Sampling stochastic dynamic programming applied to reservoir operation. Water Resources Research, 26(3), 447-454. doi:10.1029/wr026i003p00447Keshtkar, A. R., Salajegheh, A., Sadoddin, A., & Allan, M. G. (2013). Application of Bayesian networks for sustainability assessment in catchment modeling and management (Case study: The Hablehrood river catchment). Ecological Modelling, 268, 48-54. doi:10.1016/j.ecolmodel.2013.08.003Kim, T., Heo, J.-H., Bae, D.-H., & Kim, J.-H. (2008). Single-reservoir operating rules for a year using multiobjective genetic algorithm. Journal of Hydroinformatics, 10(2), 163-179. doi:10.2166/hydro.2008.019Koutsoyiannis, D., & Economou, A. (2003). Evaluation of the parameterization-simulation-optimization approach for the control of reservoir systems. Water Resources Research, 39(6). doi:10.1029/2003wr002148Kumar, D. N., & Reddy, M. J. (2006). Ant Colony Optimization for Multi-Purpose Reservoir Operation. Water Resources Management, 20(6), 879-898. doi:10.1007/s11269-005-9012-0Nagesh Kumar, D., & Janga Reddy, M. (2007). Multipurpose Reservoir Operation Using Particle Swarm Optimization. Journal of Water Resources Planning and Management, 133(3), 192-201. doi:10.1061/(asce)0733-9496(2007)133:3(192)Kumar, K., & Kasthurirengan, S. (2018). Generalized Linear Two-Point Hedging Rule for Water Supply Reservoir Operation. Journal of Water Resources Planning and Management, 144(9), 04018051. doi:10.1061/(asce)wr.1943-5452.0000964Kwakkel, J. H., Haasnoot, M., & Walker, W. E. (2016). Comparing Robust Decision-Making and Dynamic Adaptive Policy Pathways for model-based decision support under deep uncertainty. Environmental Modelling & Software, 86, 168-183. doi:10.1016/j.envsoft.2016.09.017Labadie, J. W. (2004). Optimal Operation of Multireservoir Systems: State-of-the-Art Review. Journal of Water Resources Planning and Management, 130(2), 93-111. doi:10.1061/(asce)0733-9496(2004)130:2(93)Labadie J. W. Baldo M. &Larson R.(2000).MODSIM: Decision support system for river basin management. Documentation and user manual.Lee, J.-H., & Labadie, J. W. (2007). Stochastic optimization of multireservoir systems via reinforcement learning. Water Resources Research, 43(11). doi:10.1029/2006wr005627Lei, X., Tan, Q., Wang, X., Wang, H., Wen, X., Wang, C., & Zhang, J. (2018). Stochastic optimal operation of reservoirs based on copula functions. Journal of Hydrology, 557, 265-275. doi:10.1016/j.jhydrol.2017.12.038Lerma, N., Paredes-Arquiola, J., Andreu, J., & Solera, A. (2013). Development of operating rules for a complex multi-reservoir system by coupling genetic algorithms and network optimization. Hydrological Sciences Journal, 58(4), 797-812. doi:10.1080/02626667.2013.779777Lerma, N., Paredes-Arquiola, J., Andreu, J., Solera, A., & Sechi, G. M. (2015). Assessment of evolutionary algorithms for optimal operating rules design in real Water Resource Systems. Environmental Modelling & Software, 69, 425-436. doi:10.1016/j.envsoft.2014.09.024Li, Y., Giuliani, M., & Castelletti, A. (2017). A coupled humanโ€“natural system to assess the operational value of weather and climate services for agriculture. Hydrology and Earth System Sciences, 21(9), 4693-4709. doi:10.5194/hess-21-4693-2017Lin, N. M., & Rutten, M. (2016). Optimal Operation of a Network of Multi-purpose Reservoir: A Review. Procedia Engineering, 154, 1376-1384. doi:10.1016/j.proeng.2016.07.504Liu, P., Cai, X., & Guo, S. (2011). Deriving multiple near-optimal solutions to deterministic reservoir operation problems. Water Resources Research, 47(8). doi:10.1029/2011wr010998Loucks, D. P. (1970). Some Comments on Linear Decision Rules and Chance Constraints. Water Resources Research, 6(2), 668-671. doi:10.1029/wr006i002p00668Loucks

    Optimizaciรณn del diseรฑo estructural de pavimentos asfรกlticos para calles y carreteras

    Get PDF
    grรกficos, tablasThe construction of asphalt pavements in streets and highways is an activity that requires optimizing the consumption of significant economic and natural resources. Pavement design optimization meets contradictory objectives according to the availability of resources and usersโ€™ needs. This dissertation explores the application of metaheuristics to optimize the design of asphalt pavements using an incremental design based on the prediction of damage and vehicle operating costs (VOC). The costs are proportional to energy and resource consumption and polluting emissions. The evolution of asphalt pavement design and metaheuristic optimization techniques on this topic were reviewed. Four computer programs were developed: (1) UNLEA, a program for the structural analysis of multilayer systems. (2) PSO-UNLEA, a program that uses particle swarm optimization metaheuristic (PSO) for the backcalculation of pavement moduli. (3) UNPAVE, an incremental pavement design program based on the equations of the North American MEPDG and includes the computation of vehicle operating costs based on IRI. (4) PSO-PAVE, a PSO program to search for thicknesses that optimize the design considering construction and vehicle operating costs. The case studies show that the backcalculation and structural design of pavements can be optimized by PSO considering restrictions in the thickness and the selection of materials. Future developments should reduce the computational cost and calibrate the pavement performance and VOC models. (Texto tomado de la fuente)La construcciรณn de pavimentos asfรกlticos en calles y carreteras es una actividad que requiere la optimizaciรณn del consumo de cuantiosos recursos econรณmicos y naturales. La optimizaciรณn del diseรฑo de pavimentos atiende objetivos contradictorios de acuerdo con la disponibilidad de recursos y las necesidades de los usuarios. Este trabajo explora el empleo de metaheurรญsticas para optimizar el diseรฑo de pavimentos asfรกlticos empleando el diseรฑo incremental basado en la predicciรณn del deterioro y los costos de operaciรณn vehicular (COV). Los costos son proporcionales al consumo energรฉtico y de recursos y las emisiones contaminantes. Se revisรณ la evoluciรณn del diseรฑo de pavimentos asfรกlticos y el desarrollo de tรฉcnicas metaheurรญsticas de optimizaciรณn en este tema. Se desarrollaron cuatro programas de computador: (1) UNLEA, programa para el anรกlisis estructural de sistemas multicapa. (2) PSO-UNLEA, programa que emplea la metaheurรญstica de optimizaciรณn con enjambre de partรญculas (PSO) para el cรกlculo inverso de mรณdulos de pavimentos. (3) UNPAVE, programa de diseรฑo incremental de pavimentos basado en las ecuaciones de la MEPDG norteamericana, y el cรกlculo de costos de construcciรณn y operaciรณn vehicular basados en el IRI. (4) PSO-PAVE, programa que emplea la PSO en la bรบsqueda de espesores que permitan optimizar el diseรฑo considerando los costos de construcciรณn y de operaciรณn vehicular. Los estudios de caso muestran que el cรกlculo inverso y el diseรฑo estructural de pavimentos pueden optimizarse mediante PSO considerando restricciones en los espesores y la selecciรณn de materiales. Los desarrollos futuros deben enfocarse en reducir el costo computacional y calibrar los modelos de deterioro y COV.DoctoradoDoctor en Ingenierรญa - Ingenierรญa AutomรกticaDiseรฑo incremental de pavimentosElรฉctrica, Electrรณnica, Automatizaciรณn Y Telecomunicacione
    • โ€ฆ
    corecore