43 research outputs found

    Optimal Estimation of Ion-Channel Kinetics from Macroscopic Currents

    Get PDF
    Markov modeling provides an effective approach for modeling ion channel kinetics. There are several search algorithms for global fitting of macroscopic or single-channel currents across different experimental conditions. Here we present a particle swarm optimization(PSO)-based approach which, when used in combination with golden section search (GSS), can fit macroscopic voltage responses with a high degree of accuracy (errors within 1%) and reasonable amount of calculation time (less than 10 hours for 20 free parameters) on a desktop computer. We also describe a method for initial value estimation of the model parameters, which appears to favor identification of global optimum and can further reduce the computational cost. The PSO-GSS algorithm is applicable for kinetic models of arbitrary topology and size and compatible with common stimulation protocols, which provides a convenient approach for establishing kinetic models at the macroscopic level

    Network design decisions in supply chain planning

    Get PDF
    Structuring global supply chain networks is a complex decision-making process. The typical inputs to such a process consist of a set of customer zones to serve, a set of products to be manufactured and distributed, demand projections for the different customer zones, and information about future conditions, costs (e.g. for production and transportation) and resources (e.g. capacities, available raw materials). Given the above inputs, companies have to decide where to locate new service facilities (e.g. plants, warehouses), how to allocate procurement and production activities to the variousmanufacturing facilities, and how to manage the transportation of products through the supply chain network in order to satisfy customer demands. We propose a mathematical modelling framework capturing many practical aspects of network design problems simultaneously. For problems of reasonable size we report on computational experience with standard mathematical programming software. The discussion is extended with other decisions required by many real-life applications in strategic supply chain planning. In particular, the multi-period nature of some decisions is addressed by a more comprehensivemodel, which is solved by a specially tailored heuristic approach. The numerical results suggest that the solution procedure can identify high quality solutions within reasonable computational time

    Path Optimization and Object Localization Using Hybrid Particle Swarm and Ant Colony Optimization for Mobile RFID Reader

    Get PDF
    This paper proposes a hybrid approach of Particle Swarm Optimization (PSO) and Ant Colony Optimization (ACO) for the mobile Radio Frequency Identification System (RFID) reader to get the shortest path for object localization. In this approach, we have adopted the ACO global pheromone updating information of ants to guide the update velocities and position for PSO based on nearest neighbor constraints. The pheromone information is used efficiently to guide the selection of each particle in a search space of its visits. The best path will be used for mobile RFID reader for objects localization in search space. Simulation results show that the method is effective, minimizing the number of visited nodes for a mobile RFID reader

    Fault Tolerant Dense Wavelength Division Multiplexing Optical Transport Networks, Journal of Telecommunications and Information Technology, 2009, nr 1

    Get PDF
    Design of fault tolerant dense wavelength division multiplexing (DWDM) backbones is a major issue for service provision in the presence of failures. The problem is an NP-hard problem. This paper presents a genetic algorithm based approach for designing fault tolerant DWDM optical networks in the presence of a single link failure. The working and spare lightpaths are encoded into variable length chromosomes. Then the best lightpaths are found by use of a fitness function and these are assigned the minimum number of wavelengths according to the problem constraints using first-fit (FF) algorithm. The proposed approach has been evaluated for dedicated path protection architecture. The results, obtained from the ARPA2 test bench network, show that the method is well suited to tackling this complex and multi-constraint problem

    A proof of convergence of a finite volume scheme for modified steady Richards’ equation describing transport processes in the pressing section of a paper machine

    Get PDF
    A number of water flow problems in porous media are modelled by Richards’ equation [1]. There exist a lot of different applications of this model. We are concerned with the simulation of the pressing section of a paper machine. This part of the industrial process provides the dewatering of the paper layer by the use of clothings, i.e. press felts, which absorb the water during pressing [2]. A system of nips are formed in the simplest case by rolls, which increase sheet dryness by pressing against each other (see Figure 1). A lot of theoretical studies were done for Richards’ equation (see [3], [4] and references therein). Most articles consider the case of x-independent coefficients. This simplifies the system considerably since, after Kirchhoff’s transformation of the problem, the elliptic operator becomes linear. In our case this condition is not satisfied and we have to consider nonlinear operator of second order. Moreover, all these articles are concerned with the nonstationary problem, while we are interested in the stationary case. Due to complexity of the physical process our problem has a specific feature. An additional convective term appears in our model because the porous media moves with the constant velocity through the pressing rolls. This term is zero in immobile porous media. We are not aware of papers, which deal with such kind of modified steady Richards’ problem. The goal of this paper is to obtain the stability results, to show the existence of a solution to the discrete problem, to prove the convergence of the approximate solution to the weak solution of the modified steady Richards’ equation, which describes the transport processes in the pressing section. In Section 2 we present the model which we consider. In Section 3 a numerical scheme obtained by the finite volume method is given. The main part of this paper is theoretical studies, which are given in Section 4. Section 5 presents a numerical experiment. The conclusion of this work is given in Section 6

    Using the Sharp Operator for edge detection and nonlinear diffusion

    Get PDF
    In this paper we investigate the use of the sharp function known from functional analysis in image processing. The sharp function gives a measure of the variations of a function and can be used as an edge detector. We extend the classical notion of the sharp function for measuring anisotropic behaviour and give a fast anisotropic edge detection variant inspired by the sharp function. We show that these edge detection results are useful to steer isotropic and anisotropic nonlinear diffusion filters for image enhancement

    Cycling network projects: a decision-making aid approach

    Full text link
    Effcient and clean urban mobility is a key factor in quality of life and sustainability of towns and cities. Traditionally, cities have focused on cars and other fuel-based vehicles as transport means. However, several problems are directly linked to massive car use, particularly in terms of air pollution and traffc congestion. Several works reckon that vehicle emissions produce over 90% of air pollution. One way to reduce the use of fuel-based vehicles (and thus the emission of pollutants) is to create effcient, easily accessible and secure bike lane networks which, as many studies show, promote cycling as a major mean of conveyance. In this regard, this paper presents an approach to design and calculate bike lane networks based on the use of open data about the historical use of a urban bike rental services. Concretely, we model this task as a network design problem (NDP) and we study four di erent optimisation strategies to solve it. We test these methods using data of the city of Valencia (Spain). Our experiments conclude that an optimisation approach based on genetic programming obtains the best performance. The proposed method can be easily used to improve or extend bike lane networks based on historic bike use data in other cities.This work has been partially supported by the EU (FEDER) and Spanish MINECO grant TIN2015-69175-C4-1-R, and the REFRAME project, granted by the European Coordinated Research on Long-term Challenges in Information and Communication Sciences Technologies ERA-Net (CHIST-ERA), and funded by MINECO in Spain (PCIN-2013-037), by Generalitat Valenciana PROMETEOII/2015/013, and by the French National Research agency (ANR).MartĂ­nez Plumed, F.; Ferri RamĂ­rez, C.; Contreras Ochando, L. (2016). Cycling network projects: a decision-making aid approach. CEUR Workshop Proceedings. http://hdl.handle.net/10251/87734

    Structure and pressure drop of real and virtual metal wire meshes

    Get PDF
    An efficient mathematical model to virtually generate woven metal wire meshes is presented. The accuracy of this model is verified by the comparison of virtual structures with three-dimensional images of real meshes, which are produced via computer tomography. Virtual structures are generated for three types of metal wire meshes using only easy to measure parameters. For these geometries the velocity-dependent pressure drop is simulated and compared with measurements performed by the GKD - Gebr. Kufferath AG. The simulation results lie within the tolerances of the measurements. The generation of the structures and the numerical simulations were done at GKD using the Fraunhofer GeoDict software

    A biologically inspired network design model

    Get PDF
    A network design problem is to select a subset of links in a transport network that satisfy passengers or cargo transportation demands while minimizing the overall costs of the transportation. We propose a mathematical model of the foraging behaviour of slime mould P. polycephalum to solve the network design problem and construct optimal transport networks. In our algorithm, a traffic flow between any two cities is estimated using a gravity model. The flow is imitated by the model of the slime mould. The algorithm model converges to a steady state, which represents a solution of the problem. We validate our approach on examples of major transport networks in Mexico and China. By comparing networks developed in our approach with the man-made highways, networks developed by the slime mould, and a cellular automata model inspired by slime mould, we demonstrate the flexibility and efficiency of our approach
    corecore