197 research outputs found

    A Hybrid Tabu/Scatter Search Algorithm for Simulation-Based Optimization of Multi-Objective Runway Operations Scheduling

    Get PDF
    As air traffic continues to increase, air traffic flow management is becoming more challenging to effectively and efficiently utilize airport capacity without compromising safety, environmental and economic requirements. Since runways are often the primary limiting factor in airport capacity, runway operations scheduling emerge as an important problem to be solved to alleviate flight delays and air traffic congestion while reducing unnecessary fuel consumption and negative environmental impacts. However, even a moderately sized real-life runway operations scheduling problem tends to be too complex to be solved by analytical methods, where all mathematical models for this problem belong to the complexity class of NP-Hard in a strong sense due to combinatorial nature of the problem. Therefore, it is only possible to solve practical runway operations scheduling problem by making a large number of simplifications and assumptions in a deterministic context. As a result, most analytical models proposed in the literature suffer from too much abstraction, avoid uncertainties and, in turn, have little applicability in practice. On the other hand, simulation-based methods have the capability to characterize complex and stochastic real-life runway operations in detail, and to cope with several constraints and stakeholders’ preferences, which are commonly considered as important factors in practice. This dissertation proposes a simulation-based optimization (SbO) approach for multi-objective runway operations scheduling problem. The SbO approach utilizes a discrete-event simulation model for accounting for uncertain conditions, and an optimization component for finding the best known Pareto set of solutions. This approach explicitly considers uncertainty to decrease the real operational cost of the runway operations as well as fairness among aircraft as part of the optimization process. Due to the problem’s large, complex and unstructured search space, a hybrid Tabu/Scatter Search algorithm is developed to find solutions by using an elitist strategy to preserve non-dominated solutions, a dynamic update mechanism to produce high-quality solutions and a rebuilding strategy to promote solution diversity. The proposed algorithm is applied to bi-objective (i.e., maximizing runway utilization and fairness) runway operations schedule optimization as the optimization component of the SbO framework, where the developed simulation model acts as an external function evaluator. To the best of our knowledge, this is the first SbO approach that explicitly considers uncertainties in the development of schedules for runway operations as well as considers fairness as a secondary objective. In addition, computational experiments are conducted using real-life datasets for a major US airport to demonstrate that the proposed approach is effective and computationally tractable in a practical sense. In the experimental design, statistical design of experiments method is employed to analyze the impacts of parameters on the simulation as well as on the optimization component’s performance, and to identify the appropriate parameter levels. The results show that the implementation of the proposed SbO approach provides operational benefits when compared to First-Come-First-Served (FCFS) and deterministic approaches without compromising schedule fairness. It is also shown that proposed algorithm is capable of generating a set of solutions that represent the inherent trade-offs between the objectives that are considered. The proposed decision-making algorithm might be used as part of decision support tools to aid air traffic controllers in solving the real-life runway operations scheduling problem

    What cost reslience?

    Get PDF
    Air traffic management research lacks a framework for modelling the cost of resilience during disturbance. There is no universally accepted metric for cost resilience. The design of such a framework is presented and the modelling to date is reported. The framework allows performance assessment as a function of differential stakeholder uptake of strategic mechanisms designed to mitigate disturbance. Advanced metrics, cost- and non-cost-based, disaggregated by stakeholder subtypes, will be deployed. A new cost resilience metric is proposed

    Modulation of en-route charges to redistribute traffic in the European airspace

    Get PDF
    Peak-load pricing (PLP), a two-tariffs charging scheme commonly used in public transport and utilities, is tested on the European Air Traffic Management (ATM) system as a means for reducing capacity-demand imbalances. In particular, a centralised approach to PLP (CPLP) where a Central Planner (CP) sets en-route charges on the network is presented. CPLP consists of two phases: in the first, congested airspace sectors and their peak and off-peak hours are identified; in the second, CP assesses and sets en-route charges in order to reduce overall shift on the network. Such charges should guarantee that Air Navigation Service Providers (ANSPs) are able to recover their operational costs while inducing the Airspace Users (AUs) to route their flights in a way that respects airspace capacity. The interaction between CP and AUs is modelled as a Stackelberg game and formulated by means of bilevel linear programming. Two heuristic approaches, based on Coordinate-wise Descent and Genetic Algorithms are implemented to solve the CPLP model on a data set obtained from historical data for an entire day of traffic on European airspace. Results show that significant improvements in traffic distribution in terms of shift and sector load can be achieved through this simple en-route charges modulation scheme

    An integrated approach to value chain analysis of end of life aircraft treatment

    Get PDF
    Dans cette thèse, on propose une approche holistique pour l’analyse, la modélisation et l’optimisation des performances de la chaîne de valeur pour le traitement des avions en fin de vie (FdV). Les recherches réalisées ont débouché sur onze importantes contributions. Dans la première contribution, on traite du contexte, de la complexité, de la diversité et des défis du recyclage d’avions en FdV. La seconde contribution traite du problème de la prédiction du nombre de retraits d’avions et propose une approche intégrée pour l’estimation de ce nombre de retraits. Le troisième et le quatrième articles visent à identifier les parties prenantes, les valeurs perçues par chaque partenaire et indiquent comment cette valeur peut affecter les décisions au stade de la conception. Les considérations relatives à la conception et à la fabrication ont donné lieu à quatre contributions importantes. La cinquième contribution traite des défis et opportunités pouvant résulter de l’application des concepts de la chaîne logistique verte, pour les manufacturiers d’avions. Dans la sixième contribution, un outil d’aide à la décision a été développé pour choisir la stratégie verte qui optimise les performances globales de de toute la chaîne de valeur en tenant compte des priorités et contraintes de chaque partenaire. Dans la septième contribution, un modèle mathématique est proposé pour analyser le choix stratégique des manufacturiers en réponse aux directives en matière de FdV de produits comme le résultat des interactions des compétiteurs dans le marché. La huitième contribution porte sur les travaux réalisés dans le cadre d’un stage chez le constructeur d’avions, Bombardier. Cette dernière traite de l’apport de « l’analyse du cycle de vie » au stade de la conception d’avions. La neuvième contribution introduit une méthodologie d’analyse de la chaîne de valeur dans un contexte de développement durable. Finalement, les dixième et onzième contributions proposent une approche holistique pour le traitement des avions en FdV en intégrant les concepts du « lean », du développement durable et des contraintes et opportunités inhérentes à la mondialisation des affaires. Un modèle d’optimisation intégrant les modèles d’affaires, les stratégies de désassemblage et les structures du réseau qui influencent l’efficacité, la stabilité et l’agilité du réseau de récupération est proposé. Les données requises pour exploiter le modèle sont indiquées dans l’article. Mots-clés: Fin de vie des avions, analyse de la chaîne de valeurs, développement durable, intervenants.The number of aircrafts at the end of life (EOL) is continuously increasing. Dealing with retired aircrafts considering the environmental, social and economic impacts is becoming an emerging problem in the aviation industry in near future. This thesis seeks to develop a holistic approach in order to analyze the value chain of EOL aircraft treatment in the context of sustainable development. The performed researches have led to eleven main contributions. In the first contribution, the complexity and diversity of the EOL aircraft recycling including the challenges and problem context are discussed. The second contribution addresses the challenges for estimation of retired aircrafts and proposes an integrated approach for prediction of EOL aircrafts. The third and fourth contributions aim to identify the players involved in EOL recycling context, values perceived by different shareholders and formulate that how such value can affect design decisions. Design stage consideration and manufacture’s issues are discussed and have led to four main contributions. The fifth contribution addresses the opportunities and challenges of applying green supply chain for aircraft manufacturers. In the sixth contribution, a decision tool is developed to aid manufactures in early stage of design for their green strategy choices. In the seventh contribution, a mathematical model is developed in order to analyze the strategic choice of manufacturers in response to EOL directives as the result of the interaction of competitors in the market. An internship project has been also performed in Bombardier and led to the eighth contribution, which addresses life cycle approach and incorporating the sustainability in early stage of design of aircraft. The ninth contribution introduces a methodology for analyzing the value chain in the context of sustainable development. Finally, the tenth and eleventh contributions propose a holistic approach to EOL aircraft treatment considering lean principals, sustainable development, and global business environment. An optimization model is developed to support decision making in both strategic and managerial level. The analytical approaches, decision tools and step by step guidelines proposed in this thesis will aid decision makers to identify appropriate strategies for the EOL aircraft treatment in the sustainable development context. Keywords: End of life aircraft, value chain analysis, sustainable development, stakeholders

    Modulation of en-route charges to redistribute traffic in the European airspace

    Get PDF
    Peak-load pricing (PLP), a two-tariffs charging scheme commonly used in public transport and utilities, is tested on the European Air Traffic Management (ATM) system as a means for reducing capacity-demand imbalances. In particular, a centralised approach to PLP (CPLP) where a Central Planner (CP) sets en-route charges on the network is presented. CPLP consists of two phases: in the first, congested airspace sectors and their peak and off-peak hours are identified; in the second, CP assesses and sets en-route charges in order to reduce overall shift on the network. Such charges should guarantee that Air Navigation Service Providers (ANSPs) are able to recover their operational costs while inducing the Airspace Users (AUs) to route their flights in a way that respects airspace capacity. The interaction between CP and AUs is modelled as a Stackelberg game and formulated by means of bilevel linear programming. Two heuristic approaches, based on Coordinate-wise Descent and Genetic Algorithms are implemented to solve the CPLP model on a data set obtained from historical data for an entire day of traffic on European airspace. Results show that significant improvements in traffic distribution in terms of shift and sector load can be achieved through this simple en-route charges modulation scheme

    Strategy Tripod Perspective on the Determinants of Airline Efficiency in A Global Context: An Application of DEA and Tobit Analysis

    Get PDF
    The airline industry is vital to contemporary civilization since it is a key player in the globalization process: linking regions, fostering global commerce, promoting tourism and aiding economic and social progress. However, there has been little study on the link between the operational environment and airline efficiency. Investigating the amalgamation of institutions, organisations and strategic decisions is critical to understanding how airlines operate efficiently. This research aims to employ the strategy tripod perspective to investigate the efficiency of a global airline sample using a non-parametric linear programming method (data envelopment analysis [DEA]). Using a Tobit regression, the bootstrapped DEA efficiency change scores are further regressed to determine the drivers of efficiency. The strategy tripod is employed to assess the impact of institutions, industry and resources on airline efficiency. Institutions are measured by global indices of destination attractiveness; industry, including competition, jet fuel and business model; and finally, resources, such as the number of full-time employees, alliances, ownership and connectivity. The first part of the study uses panel data from 35 major airlines, collected from their annual reports for the period 2011 to 2018, and country attractiveness indices from global indicators. The second part of the research involves a qualitative data collection approach and semi-structured interviews with experts in the field to evaluate the impact of COVID-19 on the first part’s significant findings. The main findings reveal that airlines operate at a highly competitive level regardless of their competition intensity or origin. Furthermore, the unpredictability of the environment complicates airline operations. The efficiency drivers of an airline are partially determined by its type of business model, its degree of cooperation and how fuel cost is managed. Trade openness has a negative influence on airline efficiency. COVID-19 has toppled the airline industry, forcing airlines to reconsider their business model and continuously increase cooperation. Human resources, sustainability and alternative fuel sources are critical to airline survival. Finally, this study provides some evidence for the practicality of the strategy tripod and hints at the need for a broader approach in the study of international strategies

    Sustainable distribution system design: a two-phase DoE-guided meta-heuristic solution approach for a three-echelon bi-objective AHP-integrated location-routing model

    Get PDF
    This article introduces a sustainable integrated bi-objective location-routing model, its two-phase solution approach and an analysis procedure for the distribution side of three-echelon logistics networks. The mixed-integer programming model captures several real-world factors by introducing an additional objective function and a set of new constraints in the model that outbound logistics channels find difficult to reconcile. The sustainable model minimises CO2 emissions from transportation and total costs incurred in facilities and the transportation channels. Design of Experiment (DoE) is integrated to the meta-heuristic based optimiser to solve the model in two phases. The DoE-guided solution approach enables the optimiser to offer the best stable solution space by taking out solutions with poor design features from the space and refining the feasible solutions using a convergence algorithm thereby selecting the realistic results. Several alternative solution scenarios are obtained by prioritising and ranking the realistic solution sets through a multi-attribute decision analysis tool, Technique for Order Preference by Similarity to Ideal Solution (TOPSIS). The robust model provides the decision maker the ability to take decisions on sustainable open alternative optimal routes. The outcomes of this research provide theoretical and methodological contributions, in terms of integrated bi-objective location-routing model and its two-phase DoE-guided meta-heuristic solution approach, for the distribution side of three-echelon logistics networks

    Conceptual Design and Performance Optimization of a Tip Device for a Regional Turboprop Aircraft

    Get PDF
    An increasing number of aircraft is equipped with wing tip devices, which either are installed by the aircraft manufacturer at the production line or are retrofitted after the delivery of the aircraft to its operator. The installation of wing tip devices has not been a popular choice for regional turboprop aircraft, and the novelty of the current study is to investigate the feasibility of retrofitting the British Aerospace (BAe) Jetstream 31 with an appropriate wing tip device (or winglet) to increase its cruise range performance, taking also into account the aerodynamic and structural impact of the implementation. An aircraft model has been developed, and the simulated optimal winglet design achieved a 2.38% increase of the maximum range by reducing the total drag by 1.19% at a mass penalty of 3.25%, as compared with the baseline aircraft configuration. Other designs were found to be more effective in reducing the total drag, but the structural reinforcement required for their implementation outweighed the achieved performance improvements. Since successful winglet retrofit programs for typical short to medium-range narrow-body aircraft report even more than 3% of block fuel improvements, undertaking the project of installing an optimal winglet design to the BAe Jetstream 31 should also consider a direct operating cost (DOC) assessment on top of the aerodynamic and structural aspects of the retrofit
    • …
    corecore