56 research outputs found

    A system for learning statistical motion patterns

    Get PDF
    Analysis of motion patterns is an effective approach for anomaly detection and behavior prediction. Current approaches for the analysis of motion patterns depend on known scenes, where objects move in predefined ways. It is highly desirable to automatically construct object motion patterns which reflect the knowledge of the scene. In this paper, we present a system for automatically learning motion patterns for anomaly detection and behavior prediction based on a proposed algorithm for robustly tracking multiple objects. In the tracking algorithm, foreground pixels are clustered using a fast accurate fuzzy k-means algorithm. Growing and prediction of the cluster centroids of foreground pixels ensure that each cluster centroid is associated with a moving object in the scene. In the algorithm for learning motion patterns, trajectories are clustered hierarchically using spatial and temporal information and then each motion pattern is represented with a chain of Gaussian distributions. Based on the learned statistical motion patterns, statistical methods are used to detect anomalies and predict behaviors. Our system is tested using image sequences acquired, respectively, from a crowded real traffic scene and a model traffic scene. Experimental results show the robustness of the tracking algorithm, the efficiency of the algorithm for learning motion patterns, and the encouraging performance of algorithms for anomaly detection and behavior prediction

    A system for learning statistical motion patterns

    Get PDF
    Analysis of motion patterns is an effective approach for anomaly detection and behavior prediction. Current approaches for the analysis of motion patterns depend on known scenes, where objects move in predefined ways. It is highly desirable to automatically construct object motion patterns which reflect the knowledge of the scene. In this paper, we present a system for automatically learning motion patterns for anomaly detection and behavior prediction based on a proposed algorithm for robustly tracking multiple objects. In the tracking algorithm, foreground pixels are clustered using a fast accurate fuzzy k-means algorithm. Growing and prediction of the cluster centroids of foreground pixels ensure that each cluster centroid is associated with a moving object in the scene. In the algorithm for learning motion patterns, trajectories are clustered hierarchically using spatial and temporal information and then each motion pattern is represented with a chain of Gaussian distributions. Based on the learned statistical motion patterns, statistical methods are used to detect anomalies and predict behaviors. Our system is tested using image sequences acquired, respectively, from a crowded real traffic scene and a model traffic scene. Experimental results show the robustness of the tracking algorithm, the efficiency of the algorithm for learning motion patterns, and the encouraging performance of algorithms for anomaly detection and behavior prediction

    Design of Integrated Artificial Intelligence Techniques for Video Surveillance on IoT Enabled Wireless Multimedia Sensor Networks

    Get PDF
    The recent advancements in the Internet of Things (IoT) and Wireless Multimedia Sensor Networks (WMSN) made high-speed multimedia streaming, data processing, and essential analytics processes with minimal delay. Multimedia sensors used in WMSN-based surveillance applications are beneficial helpful in attaining accurate and elaborate details. However, it has become essential to design an effective and lightweight solution for data traffic management in WMSN owing to the massive quantities of data, generated by multimedia sensors. The development of Artificial Intelligence (AI) and Machine Learning (ML) techniques can be leveraged to investigate, collect, store, and process multimedia streaming data for decision-making in real-time scenarios. In this aspect, the current study develops an Integrated AI technique for Video Surveillance in IoT-enabled WMSN, called IAIVS-WMSN. The proposed IAIVS-WMSN technique aims to design a practical scheme for object detection and data transmission in WMSN. The proposed IAIVS-WMSN approach encompasses three stages: object detection, image compression, and clustering. The Mask Regional Convolutional Neural Network (Mask RCNN) technique is primarily utilized for object detection in the target region. Besides, Neighbourhood Correlation Sequence-based Image Compression (NCSIC) technique is applied to reduce data transmission. Finally, Artificial Flora Algorithm (AFA)-based clustering technique is designed for the election of Cluster Heads (CHs) and construction clusters. The design of object detection with compression and clustering techniques for WMSN shows the novelty of the work. These three processes’ designs enable one to accomplish effective data transmission in IoT-enabled WMSN. The researchers conducted multiple simulations to highlight the supreme performance of the IAIVS-WMSN approach. The simulation outcomes inferred the enhanced performance of the IAIVS-WMSN algorithm to the existing approaches

    The Dynamic Model Embed in Augmented Graph Cuts for Robust Hand Tracking and Segmentation in Videos

    Get PDF
    Segmenting human hand is important in computer vision applications, for example, sign language interpretation, human computer interaction, and gesture recognition. However, some serious bottlenecks still exist in hand localization systems such as fast hand motion capture, hand over face, and hand occlusions on which we focus in this paper. We present a novel method for hand tracking and segmentation based on augmented graph cuts and dynamic model. First, an effective dynamic model for state estimation is generated, which correctly predicts the location of hands probably having fast motion or shape deformations. Second, new energy terms are brought into the energy function to develop augmented graph cuts based on some cues, namely, spatial information, hand motion, and chamfer distance. The proposed method successfully achieves hand segmentation even though the hand passes over other skin-colored objects. Some challenging videos are provided in the case of hand over face, hand occlusions, dynamic background, and fast motion. Experimental results demonstrate that the proposed method is much more accurate than other graph cuts-based methods for hand tracking and segmentation

    Supervised descent method (SDM) applied to accurate pupil detection in off-the-shelf eye tracking systems

    Get PDF
    The precise detection of pupil/iris center is key to estimate gaze accurately. This fact becomes specially challenging in low cost frameworks in which the algorithms employed for high performance systems fail. In the last years an outstanding effort has been made in order to apply training-based methods to low resolution images. In this paper, Supervised Descent Method (SDM) is applied to GI4E database. The 2D landmarks employed for training are the corners of the eyes and the pupil centers. In order to validate the algorithm proposed, a cross validation procedure is performed. The strategy employed for the training allows us to affirm that our method can potentially outperform the state of the art algorithms applied to the same dataset in terms of 2D accuracy. The promising results encourage to carry on in the study of training-based methods for eye tracking.Spanish Ministry of Economy,Industry and Competitiveness, contracts TIN2014-52897-R and TIN2017-84388-

    Pedestrian Models for Autonomous Driving Part I: Low-Level Models, from Sensing to Tracking

    Get PDF
    Abstract—Autonomous vehicles (AVs) must share space with pedestrians, both in carriageway cases such as cars at pedestrian crossings and off-carriageway cases such as delivery vehicles navigating through crowds on pedestrianized high-streets. Unlike static obstacles, pedestrians are active agents with complex, inter- active motions. Planning AV actions in the presence of pedestrians thus requires modelling of their probable future behaviour as well as detecting and tracking them. This narrative review article is Part I of a pair, together surveying the current technology stack involved in this process, organising recent research into a hierarchical taxonomy ranging from low-level image detection to high-level psychology models, from the perspective of an AV designer. This self-contained Part I covers the lower levels of this stack, from sensing, through detection and recognition, up to tracking of pedestrians. Technologies at these levels are found to be mature and available as foundations for use in high-level systems, such as behaviour modelling, prediction and interaction control

    Computational Anatomy for Multi-Organ Analysis in Medical Imaging: A Review

    Full text link
    The medical image analysis field has traditionally been focused on the development of organ-, and disease-specific methods. Recently, the interest in the development of more 20 comprehensive computational anatomical models has grown, leading to the creation of multi-organ models. Multi-organ approaches, unlike traditional organ-specific strategies, incorporate inter-organ relations into the model, thus leading to a more accurate representation of the complex human anatomy. Inter-organ relations are not only spatial, but also functional and physiological. Over the years, the strategies 25 proposed to efficiently model multi-organ structures have evolved from the simple global modeling, to more sophisticated approaches such as sequential, hierarchical, or machine learning-based models. In this paper, we present a review of the state of the art on multi-organ analysis and associated computation anatomy methodology. The manuscript follows a methodology-based classification of the different techniques 30 available for the analysis of multi-organs and multi-anatomical structures, from techniques using point distribution models to the most recent deep learning-based approaches. With more than 300 papers included in this review, we reflect on the trends and challenges of the field of computational anatomy, the particularities of each anatomical region, and the potential of multi-organ analysis to increase the impact of 35 medical imaging applications on the future of healthcare.Comment: Paper under revie

    3D Capturing Performances of Low-Cost Range Sensors for Mass-Market Applications

    Get PDF
    Since the advent of the first Kinect as motion controller device for the Microsoft XBOX platform (November 2010), several similar active and low-cost range sensing devices have been introduced on the mass-market for several purposes, including gesture based interfaces, 3D multimedia interaction, robot navigation, finger tracking, 3D body scanning for garment design and proximity sensors for automotive. However, given their capability to generate a real time stream of range images, these has been used in some projects also as general purpose range devices, with performances that for some applications might be satisfying. This paper shows the working principle of the various devices, analyzing them in terms of systematic errors and random errors for exploring the applicability of them in standard 3D capturing problems. Five actual devices have been tested featuring three different technologies: i) Kinect V1 by Microsoft, Structure Sensor by Occipital, and Xtion PRO by ASUS, all based on different implementations of the Primesense sensor; ii) F200 by Intel/Creative, implementing the Realsense pattern projection technology; Kinect V2 by Microsoft, equipped with the Canesta TOF Camera. A critical analysis of the results tries first of all to compare them, and secondarily to focus the range of applications for which such devices could actually work as a viable solution
    • …
    corecore