127 research outputs found

    Multispecies Coevolution Particle Swarm Optimization Based on Previous Search History

    Get PDF
    A hybrid coevolution particle swarm optimization algorithm with dynamic multispecies strategy based on K-means clustering and nonrevisit strategy based on Binary Space Partitioning fitness tree (called MCPSO-PSH) is proposed. Previous search history memorized into the Binary Space Partitioning fitness tree can effectively restrain the individuals’ revisit phenomenon. The whole population is partitioned into several subspecies and cooperative coevolution is realized by an information communication mechanism between subspecies, which can enhance the global search ability of particles and avoid premature convergence to local optimum. To demonstrate the power of the method, comparisons between the proposed algorithm and state-of-the-art algorithms are grouped into two categories: 10 basic benchmark functions (10-dimensional and 30-dimensional), 10 CEC2005 benchmark functions (30-dimensional), and a real-world problem (multilevel image segmentation problems). Experimental results show that MCPSO-PSH displays a competitive performance compared to the other swarm-based or evolutionary algorithms in terms of solution accuracy and statistical tests

    Enhanced Ai-Based Machine Learning Model for an Accurate Segmentation and Classification Methods

    Get PDF
    Phone Laser Scanner becomes the versatile sensor module that is premised on Lamp Identification and Spanning methodology and is used in a spectrum of uses. There are several prior editorials in the literary works that concentrate on the implementations or attributes of these processes; even so, evaluations of all those inventive computational techniques reported in the literature have not even been performed in the required thickness. At ToAT that finish, we examine and summarize the latest advances in Artificial Intelligence based machine learning data processing approaches such as extracting features, fragmentation, machine vision, and categorization. In this survey, we have reviewed total 48 papers based on an enhanced AI based machine learning model for accurate classification and segmentation methods. Here, we have reviewed the sections on segmentation and classification of images based on machine learning models

    A Survey on Evolutionary Computation for Computer Vision and Image Analysis: Past, Present, and Future Trends

    Get PDF
    Computer vision (CV) is a big and important field in artificial intelligence covering a wide range of applications. Image analysis is a major task in CV aiming to extract, analyse and understand the visual content of images. However, imagerelated tasks are very challenging due to many factors, e.g., high variations across images, high dimensionality, domain expertise requirement, and image distortions. Evolutionary computation (EC) approaches have been widely used for image analysis with significant achievement. However, there is no comprehensive survey of existing EC approaches to image analysis. To fill this gap, this paper provides a comprehensive survey covering all essential EC approaches to important image analysis tasks including edge detection, image segmentation, image feature analysis, image classification, object detection, and others. This survey aims to provide a better understanding of evolutionary computer vision (ECV) by discussing the contributions of different approaches and exploring how and why EC is used for CV and image analysis. The applications, challenges, issues, and trends associated to this research field are also discussed and summarised to provide further guidelines and opportunities for future research

    Information theoretic thresholding techniques based on particle swarm optimization.

    Get PDF
    In this dissertation, we discuss multi-level image thresholding techniques based on information theoretic entropies. In order to apply the correlation information of neighboring pixels of an image to obtain better segmentation results, we propose several multi-level thresholding models by using Gray-Level & Local-Average histogram (GLLA) and Gray-Level & Local-Variance histogram (GLLV). Firstly, a RGB color image thresholding model based on GLLA histogram and Tsallis-Havrda-Charv\u27at entropy is discussed. We validate the multi-level thresholding criterion function by using mathematical induction. For each component image, we assign the mean value from each thresholded class to obtain three segmented component images independently. Then we obtain the segmented color image by combining the three segmented component images. Secondly, we use the GLLV histogram to propose three novel entropic multi-level thresholding models based on Shannon entropy, R\u27enyi entropy and Tsallis-Havrda-Charv\u27at entropy respectively. Then we apply these models on the three components of a RGB color image to complete the RGB color image segmentation. An entropic thresholding model is mostly about searching for the optimal threshold values by maximizing or minimizing a criterion function. We apply particle swarm optimization (PSO) algorithm to search the optimal threshold values for all the models. We conduct the experiments extensively on The Berkeley Segmentation Dataset and Benchmark (BSDS300) and calculate the average four performance indices (Probability Rand Index, PRI, Global Consistency Error, GCE, Variation of Information, VOI and Boundary Displacement Error, BDE) to show the effectiveness and reasonability of the proposed models

    Modified Discrete Grey Wolf Optimizer Algorithm for Multilevel Image Thresholding

    Get PDF
    The computation of image segmentation has become more complicated with the increasing number of thresholds, and the option and application of the thresholds in image thresholding fields have become an NP problem at the same time. The paper puts forward the modified discrete grey wolf optimizer algorithm (MDGWO), which improves on the optimal solution updating mechanism of the search agent by the weights. Taking Kapur’s entropy as the optimized function and based on the discreteness of threshold in image segmentation, the paper firstly discretizes the grey wolf optimizer (GWO) and then proposes a new attack strategy by using the weight coefficient to replace the search formula for optimal solution used in the original algorithm. The experimental results show that MDGWO can search out the optimal thresholds efficiently and precisely, which are very close to the result examined by exhaustive searches. In comparison with the electromagnetism optimization (EMO), the differential evolution (DE), the Artifical Bee Colony (ABC), and the classical GWO, it is concluded that MDGWO has advantages over the latter four in terms of image segmentation quality and objective function values and their stability

    Improved Bat Algorithm Applied to Multilevel Image Thresholding

    Get PDF

    Color Image Segmentation Using Fuzzy C-Regression Model

    Get PDF
    Image segmentation is one important process in image analysis and computer vision and is a valuable tool that can be applied in fields of image processing, health care, remote sensing, and traffic image detection. Given the lack of prior knowledge of the ground truth, unsupervised learning techniques like clustering have been largely adopted. Fuzzy clustering has been widely studied and successfully applied in image segmentation. In situations such as limited spatial resolution, poor contrast, overlapping intensities, and noise and intensity inhomogeneities, fuzzy clustering can retain much more information than the hard clustering technique. Most fuzzy clustering algorithms have originated from fuzzy c-means (FCM) and have been successfully applied in image segmentation. However, the cluster prototype of the FCM method is hyperspherical or hyperellipsoidal. FCM may not provide the accurate partition in situations where data consists of arbitrary shapes. Therefore, a Fuzzy C-Regression Model (FCRM) using spatial information has been proposed whose prototype is hyperplaned and can be either linear or nonlinear allowing for better cluster partitioning. Thus, this paper implements FCRM and applies the algorithm to color segmentation using Berkeley’s segmentation database. The results show that FCRM obtains more accurate results compared to other fuzzy clustering algorithms

    Ensemble-based genetic algorithm explainer with automized image segmentation: A case study on melanoma detection dataset

    Get PDF
    Explainable Artificial Intelligence (XAI) makes AI understandable to the human user particularly when the model is complex and opaque. Local Interpretable Model-agnostic Explanations (LIME) has an image explainer package that is used to explain deep learning models. The image explainer of LIME needs some parameters to be manually tuned by the expert in advance, including the number of top features to be seen and the number of superpixels in the segmented input image. This parameter tuning is a time-consuming task. Hence, with the aim of developing an image explainer that automizes image segmentation, this paper proposes Ensemblebased Genetic Algorithm Explainer (EGAE) for melanoma cancer detection that automatically detects and presents the informative sections of the image to the user. EGAE has three phases. First, the sparsity of chromosomes in GAs is determined heuristically. Then, multiple GAs are executed consecutively. However, the difference between these GAs are in different number of superpixels in the input image that result in different chromosome lengths. Finally, the results of GAs are ensembled using consensus and majority votings. This paper also introduces how Euclidean distance can be used to calculate the distance between the actual explanation (delineated by experts) and the calculated explanation (computed by the explainer) for accuracy measurement. Experimental results on a melanoma dataset show that EGAE automatically detects informative lesions, and it also improves the accuracy of explanation in comparison with LIME efficiently. The python codes for EGAE, the ground truths delineated by clinicians, and the melanoma detection dataset are available at https://github.com/KhaosResearch/EGAEThis work has been partially funded by grant PID2020-112540RBC41 (funded by MCIN/AEI/10.13039/501100011033/, Spain), AETHERUMA, Spain (A smart data holistic approach for context-aware data analytics: semantics and context exploitation). Funding for open access charge: Universidad de Málaga/CBUA. Additionally, we thank Dr. Miguel Ángel Berciano Guerrero from Unidad de Oncología Intercentros, Hospitales Univesitarios Regional Virgen de la Victoria de Málaga, and Instituto de Investigaciones Biomédicas (IBIMA), Málaga, Spain, for his support in images selection and general medical orientation in the particular case of Melanoma

    Sample supervised search centric approaches in geographic object-based image analysis

    Get PDF
    Sample supervised search centric image segmentation denotes a general method where quality segments are generated based on the provision of a selection of reference segments. The main purpose of such a method is to correctly segment a multitude of identical elements in an image based on these reference segments. An efficient search algorithm traverses the parameter space of a given segmentation algorithm. A supervised quality measure guides the search for the best segmentation results, or rather the best performing parameter set. This method, which is academically pursued in the context of remote sensing and elsewhere, shows promise in assisting the generation of earth observation information products. The method may find applications specifically within the context of user driven geographic object-based image analysis approaches, mainly in respect of very high resolution optical data. Rapid mapping activities as well as general land-cover mapping or targeted element identification may benefit from such a method. In this work it is suggested that sample supervised search centric geographic segment generation forms the basis of a set of methods, or rather a methodological avenue. The original formulation of the method, although promising, is limited in the quality of the segments it can produce – it is still limited by the inherent capability of the given segmentation algorithm. From an optimisation viewpoint, various structures may be encoded forming the fitness or search landscape traversed by a given search algorithm. These structures may interact or have an interplay with the given segmentation algorithm. Various method variants considering expanded fitness landscapes are possible. Additional processes, or constituents, such as data mapping, classification and post-segmentation heuristics may be embedded into such a method. Three distinct and novel method variants are proposed and evaluated based on this concept of expanded fitness landscapes
    corecore