1,923 research outputs found

    An Advanced Conceptual Diagnostic Healthcare Framework for Diabetes and Cardiovascular Disorders

    Full text link
    The data mining along with emerging computing techniques have astonishingly influenced the healthcare industry. Researchers have used different Data Mining and Internet of Things (IoT) for enrooting a programmed solution for diabetes and heart patients. However, still, more advanced and united solution is needed that can offer a therapeutic opinion to individual diabetic and cardio patients. Therefore, here, a smart data mining and IoT (SMDIoT) based advanced healthcare system for proficient diabetes and cardiovascular diseases have been proposed. The hybridization of data mining and IoT with other emerging computing techniques is supposed to give an effective and economical solution to diabetes and cardio patients. SMDIoT hybridized the ideas of data mining, Internet of Things, chatbots, contextual entity search (CES), bio-sensors, semantic analysis and granular computing (GC). The bio-sensors of the proposed system assist in getting the current and precise status of the concerned patients so that in case of an emergency, the needful medical assistance can be provided. The novelty lies in the hybrid framework and the adequate support of chatbots, granular computing, context entity search and semantic analysis. The practical implementation of this system is very challenging and costly. However, it appears to be more operative and economical solution for diabetes and cardio patients.Comment: 11 PAGE

    IMPROVING CORONARY HEART DISEASE PREDICTION BY OUTLIER ELIMINATION

    Get PDF
    Nowadays, heart disease is the major cause of deaths globally. According to a survey conducted by the World Health Organization, almost 18 million people die of heart diseases (or cardiovascular diseases) every day. So, there should be a system for early detection and prevention of heart disease. Detection of heart disease mostly depends on the huge pathological and clinical data that is quite complex. So, researchers and other medical professionals are showing keen interest in accurate prediction of heart disease.  Heart disease is a general term for a large number of medical conditions related to heart and one of them is the coronary heart disease (CHD). Coronary heart disease is caused by the amassing of plaque on the artery walls. In this paper, various machine learning base and ensemble classifiers have been applied on heart disease dataset for efficient prediction of coronary heart disease. Various machine learning classifiers that have been employed include k-nearest neighbor, multilayer perceptron, multinomial naïve bayes, logistic regression, decision tree, random forest and support vector machine classifiers. Ensemble classifiers that have been used include majority voting, weighted average, bagging and boosting classifiers. The dataset used in this study is obtained from the Framingham Heart Study which is a long-term, ongoing cardiovascular study of people from the Framingham city in Massachusetts, USA. To evaluate the performance of the classifiers, various evaluation metrics including accuracy, precision, recall and f1 score have been used. According to our results, the best accuracy was achieved by logistic regression, random forest, majority voting, weighted average and bagging classifiers but the highest accuracy among these was achieved using weighted average ensemble classifier.&nbsp

    Performances Analysis of Heart Disease Dataset using Different Data Mining Classifications

    Get PDF
    nowadays, heart disease is one of the major diseases that cause death. It is a matter for us to concern in today’s highly chaotic life style that leads to various diseases. Early prediction of identification to heart-related diseases has been investigated by many researchers. The death rate can be further brought down if we can predict or identify the heart disease earlier. There are many studies that explore the different classification algorithms for classification and prediction of heart disease. This research studied the prediction of heart disease by using five different techniques in WEKA tools by using the input attributes of the dataset. This research used 13 attributes, such as sex, blood pressure, cholesterol and other medical terms to detect the likelihood of a patient getting heart disease. The classification techniques, namely J48, Decision Stump, Random Forest, Sequential Minimal Optimization (SMO), and Multilayer Perceptron used to analyze the heart disease. Performance measurement for this study are the accuracy of correct classification, mean absolute error and kappa statistics of the classifier. The result shows that Multilayer Perceptron Neural Networks is the most suited for early prediction of heart diseases

    Aid decision algorithms to estimate the risk in congenital heart surgery

    Get PDF
    Background and objective: In this paper, we have tested the suitability of using different artificial intelligence-based algorithms for decision support when classifying the risk of congenital heart surgery. In this sense, classification of those surgical risks provides enormous benefits as the a priori estimation of surgical outcomes depending on either the type of disease or the type of repair, and other elements that influence the final result. This preventive estimation may help to avoid future complications, or even death. Methods: We have evaluated four machine learning algorithms to achieve our objective: multilayer perceptron, self-organizing map, radial basis function networks and decision trees. The architectures implemented have the aim of classifying among three types of surgical risk: low complexity, medium complexity and high complexity. Results: Accuracy outcomes achieved range between 80% and 99%, being the multilayer perceptron method the one that offered a higher hit ratio. Conclusions: According to the results, it is feasible to develop a clinical decision support system using the evaluated algorithms. Such system would help cardiology specialists, paediatricians and surgeons to forecast the level of risk related to a congenital heart disease surgery

    Analysis of WEKA data mining algorithms Bayes net, random forest, MLP and SMO for heart disease prediction system: A case study in Iraq

    Get PDF
    Data mining is defined as a search through large amounts of data for valuable information. The association rules, grouping, clustering, prediction, sequence modeling is some essential and most general strategies for data extraction. The processing of data plays a major role in the healthcare industry's disease detection. A variety of disease evaluations should be required to diagnose the patient. However, using data mining strategies, the number of examinations should be decreased. This decreased examination plays a crucial role in terms of time and results. Heart disease is a death-provoking disorder. In this recent instance, health issues are immense because of the availability of health issues and the grouping of various situations. Today, secret information is important in the healthcare industry to make decisions. For the prediction of cardiovascular problems, (Weka 3.8.3) tools for this analysis are used for the prediction of data extraction algorithms like sequential minimal optimization (SMO), multilayer perceptron (MLP), random forest and Bayes net. The data collected combine the prediction accuracy results, the receiver operating characteristic (ROC) curve, and the PRC value. The performance of Bayes net (94.5%) and random forest (94%) technologies indicates optimum performance rather than the sequential minimal optimization (SMO) and multilayer perceptron (MLP) methods

    An Extensive Investigation on Coronory Heart Disease using Various Neuro Computational Models

    Get PDF
    The diagnosis of heart disease at the early time is important to save the life of people as it is absolutely annoying process which requires extent knowledge and rich experience. By and large the expectation of heart infections in conventional method for inspecting reports, for example, Electrocardiogram-ECG, Magnetic Resonance Imaging- MRI, Blood Pressure-BP, Stress tests by medicinal professionals. Presently a-days a huge volume of therapeutic information is accessible in restorative industry in all maladies and these truths goes about as an incredible source in foreseeing the coronary illness by the professionals took after by appropriate ensuing treatment at an early stage can bring about noteworthy life sparing. There are numerous systems in ANN ideas which are likewise contributing themselves in yielding most elevated expectation precision over medical information. As of late, a few programming devices and different techniques have been proposed by analysts for creating powerful decision supportive systems. More over many new tools and algorithms are continued to develop and representing the old ones day by day. This paper aims the study of such different methods by researchers with high accuracy in predicting the heart diseases and more study should go on to improve the accuracy over predictions of heart diseases using Neuro Computing
    corecore